22 research outputs found

    Demand Side Management Techniques for Home Energy Management Systems for Smart Cities

    Get PDF
    In this paper, three distinct distributed energy resources (DERs) modules have been built based on demand side management (DSM), and their use in power management of dwelling in future smart cities has been investigated. The investigated modules for DERs system are: incorporation of load shedding, reduction of grid penetration with renewable energy systems (RES), and implementation of home energy management systems (HEMS). The suggested approaches offer new potential for improving demand side efficiency and helping to minimize energy demand during peak hours. The main aim of this work was to investigate and explore how a specific DSM strategy for DER may assist in reducing energy usage while increasing efficiency by utilizing new developing technology. The Electrical Power System Analysis (ETAP) software was used to model and assess the integration of distributed generation, such as RES, in order to use local power storage. An energy management system has been used to evaluate a PV system with an individual household load, which proved beneficial when evaluating its potential to generate about 20–25% of the total domestic load. In this study, we have investigated how smart home appliances’ energy consumption may be minimized and explained why a management system is required to optimally utilize a PV system. Furthermore, the effect of integration of wind turbines to power networks to reduce the load on the main power grid has also been studied. The study revealed that smart grids improve energy efficiency, security, and management whilst creating environmental awareness for consumers with regards to power usage

    Failure Detection within Composite Materials in System Engineering Applications

    Get PDF
    This paper introduces essential key attributes of composite materials with a focus on carbon fibre (CF), followed by a description of common failure modes and proceeds to an investigation of stiffness of continuous CF laminates of 4-ply and 7-ply epoxy resin in pre-preg and wet layup. The three-point flexural test was performed with a Zwick Z010 machine, and the findings are presented. Continuing to real world failure scenarios and moving onto novel concept methods of live failure detection including scope for wood composites. Showing that early design considerations and further research can lead to advantages for system engineering

    Failure Detection within Composite Materials in System Engineering Applications

    Get PDF
    This paper introduces essential key attributes of composite materials with a focus on carbon fibre (CF), followed by a description of common failure modes and proceeds to an investigation of stiffness of continuous CF laminates of 4-ply and 7-ply epoxy resin in pre-preg and wet layup. The three-point flexural test was performed with a Zwick Z010 machine, and the findings are presented. Continuing to real world failure scenarios and moving onto novel concept methods of live failure detection including scope for wood composites. Showing that early design considerations and further research can lead to advantages for system engineering

    Donut-Shaped mmWave Printed Antenna Array for 5G Technology

    Get PDF
    This article presents compact and novel shape ring-slotted antenna array operating at mmwave band on central frequency of 28 GHz. The proposed structure designed at 0.256 mm thin Roggers 5880 is composed of a ring shape patch with a square slot etched at the top mid-section of partial ground plane. Through optimizing the ring and square slot parameters, a high bandwidth of 8 GHz is achieved, ranging from 26 to 32 GHz, with a simulated gain of 3.95 dBi and total efficiency of 96% for a single element. The proposed structure is further transformed in a 4-element linear array manner. With compact dimensions of 20 mm 22 mm for array, the proposed antenna delivers a high simulated gain of 10.7 dBi and is designed in such a way that it exhibits dual beam response over the entire band of interest and simulated results agree with fabricated prototype measurements

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    LC Passive Wireless Sensor System Based on Two Switches for Detection of Triple Parameters

    No full text
    This paper presents the LC-type passive wireless sensing system for the simultaneous and independent detection of triple parameters, featuring three different capacitive sensors controlled by two mechanical switches. The sensor coil was connected with three different capacitors in parallel and two mechanical switches were in series between every two capacitors, which made the whole system have three resonant frequencies. The readout coil was magnetically coupled with the sensor coil to interrogate the sensor wirelessly. The circuit was simulated advanced design system (ADS) software, and the LC sensor system was mathematically analyzed by MATLAB. Results showed that the proposed LC sensing system could test three different capacitive sensors by detecting three different resonant frequencies. The sensitivity of sensors could be determined by the capacitance calculated from the detected resonant frequencies, and the resolution of capacitance was 0.1 PF and 0.2 PF when using the proposed sensor system in practical applications. To validate the proposed scheme, a PCB inductor and three variable capacitors were constructed with two mechanical switches to realize the desired system. Experimental results closely verified the simulation outputs

    LC Passive Wireless Sensor System Based on Two Switches for Detection of Triple Parameters

    No full text
    This paper presents the LC-type passive wireless sensing system for the simultaneous and independent detection of triple parameters, featuring three different capacitive sensors controlled by two mechanical switches. The sensor coil was connected with three different capacitors in parallel and two mechanical switches were in series between every two capacitors, which made the whole system have three resonant frequencies. The readout coil was magnetically coupled with the sensor coil to interrogate the sensor wirelessly. The circuit was simulated advanced design system (ADS) software, and the LC sensor system was mathematically analyzed by MATLAB. Results showed that the proposed LC sensing system could test three different capacitive sensors by detecting three different resonant frequencies. The sensitivity of sensors could be determined by the capacitance calculated from the detected resonant frequencies, and the resolution of capacitance was 0.1 PF and 0.2 PF when using the proposed sensor system in practical applications. To validate the proposed scheme, a PCB inductor and three variable capacitors were constructed with two mechanical switches to realize the desired system. Experimental results closely verified the simulation outputs

    Infinity shell shaped mimo antenna array for mm-wave 5g applications

    Get PDF
    In this paper, a novel single layer Multiple Input–Multiple Output (MIMO) antenna for Fifth-Generation (5G) 28 GHz frequency band applications is proposed and investigated. The proposed MIMO antenna operates in the Ka-band, which is the most desirable frequency band for 5G mm-wave communication. The dielectric material is a Rogers-5880 with a relative permittivity, thickness and loss tangent of 2.2, 0.787 mm and 0.0009, respectively, in the proposed antenna design. The proposed MIMO configuration antenna element consists of triplet circular shaped rings surrounded by an infinity-shaped shell. The simulated gain achieved by the proposed design is 6.1 dBi, while the measured gain is 5.5 dBi. Furthermore, the measured and simulated antenna efficiency is 90% and 92%, respectively. One of the MIMO performance metrics—i.e., the Envelope Correlation Coefficient (ECC)—is also analyzed and found to be less than 0.16 for the entire operating bandwidth. The proposed MIMO design operates efficiently with a low ECC, better efficiency and a satisfactory gain, showing that the proposed design is a potential candidate for mm-wave communication.National Natural Science Foundation of Chin

    Duodenal diverticulum and associated pancreatitis: case report with brief review of literature

    No full text
    Pancreatitis in the elderly is a problem of increasing occurrence and is associated with severe complications. Periampullary diverticula (PAD) are extraluminal outpouchings of the duodenum rarely associated with pancreatitis. The presence of PAD should be excluded before diagnosing idiopathic pancreatitis, particularly in the elderly. However, when a duodenal diverticulum is found in the absence of any additional pathology, only then should the symptoms be attributed to the diverticulum. We describe a case of duodenal diverticulum presenting with pancreatitis to emphasize the importance of this commonly neglected etiology
    corecore