3 research outputs found

    Corrosion resistance and thermal stability of sputtered Fe44Al34Ti7N15 and Al61Ti11N28 thin films for prospective application in oil and gas industry

    Get PDF
    Fe-and Al-based thin-film metallic glass coatings (Fe44Al34Ti7N15 and Al61Ti11N28) were fabricated using magnetron co-sputtering technique, and their corrosion performances compared against wrought 316L stainless steel. The results of GI-XRD and XPS analyses demonstrated amorphous structure and oxide layer formation on the surface of the fabricated thin films, respectively. The potentiodynamic (PD) polarization test in chloride-thiosulfate (NH4Cl ​+ ​Na2S2O3) solution revealed lower corrosion current (Icorr) (0.42 ​± ​0.02 ​μA/cm2 and 0.086 ​± ​0.001 ​μA/cm2 Vs. 0.76 ​± ​0.05 ​μA/cm2), lower passivation current (Ipass) (1.45 ​± ​0.03 ​μA/cm2 and 1.83 ​± ​0.07 ​μA/cm2 Vs. 1.98 ​± ​0.04 ​μA/cm2), and approximately six-fold higher breakdown potential (Ebd) for Fe- and Al-based coatings than those of wrought 316L stainless steel. Electrochemical Impedance Spectroscopy (EIS) of both films showed 4- and 2-fold higher charge transfer resistance (Rct), 7- and 2.5-times higher film resistance (Rf), lower film capacitance values (Qf) (10 ​± ​2.4 ​μS-sacm-2, and 5.41 ​± ​0.8 ​μS-sacm-2 Vs. 18 ​± ​2.21 ​μS-sacm-2), and lower double-layer capacitance values (Qdl) (31.33 ​± ​4.74 ​μS-sacm-2, and 15.3 ​± ​0.48 ​μS-sacm-2 Vs. 43 ​± ​4.23 ​μS-sacm-2), indicating higher corrosion resistance of the thin films. Cyclic Voltammetry (CV) scan exhibited that the passive films formed on the Fe- and Al-based coatings were more stable and less prone to pitting corrosion than the wrought 316L stainless steel. The surface morphology of both films via SEM endorsed the CV scan results, showing better resistance to pitting corrosion. Furthermore, the thermal analysis via TGA and DSC revealed the excellent thermal stability of the thin films over a wide temperature range typically observed in oil-gas industries

    Low-Frequency AC Power Transmission and Distribution for Subsea Application Using Hexverter

    No full text
    Environmental goals set by world leaders to normalize climate changes are quite difficult to achieve without renewable power generation and suitable transmission technologies like low-frequency AC transmission (LFAC). The LFAC is nowadays becoming a popular choice for long-distance power transmission due to its high efficiency and low losses. This research work investigates the feasibility of employing the LFAC system for subsea transmission and distribution of 58 MW power. In this paper, the simulation model of the LFAC-based subsea transmission and distribution system is presented. This model is composed of several parts such as hexverter as a frequency converter, where a novel control strategy to optimize its zero-sequence circulating current is employed. Detailed mathematical modeling based on active, reactive power constraints and DQ transformation is performed to achieve the control strategy for zero-sequence current optimization. An offshore wind farm is proposed to be integrated with the LFAC subsea system to fulfill the compatibility requirements of the system. The control system of both the grid side and the machine-side inverter of the wind farm is designed to eliminate the real-time disturbances such as wind speed fluctuations and harmonics due to heavy inductive load operating at 16 Hz. To drive the subsea pump, a vector control-based variable-speed drive is employed for the heavy induction motor. A 5 MW, 16 Hz RL load is also added in the model to analyze the effect of general-purpose load. Each component of this system is carefully designed to make it as close to real-time as possible. The whole system is designed for 16 Hz and is compared with the standard 50 Hz system to validate this design
    corecore