2,430 research outputs found
Precise Ages of Field Stars from White Dwarf Companions
Observational tests of stellar and Galactic chemical evolution call for the
joint knowledge of a star's physical parameters, detailed element abundances,
and precise age. For cool main-sequence (MS) stars the abundances of many
elements can be measured from spectroscopy, but ages are very hard to
determine. The situation is different if the MS star has a white dwarf (WD)
companion and a known distance, as the age of such a binary system can then be
determined precisely from the photometric properties of the cooling WD. As a
pilot study for obtaining precise age determinations of field MS stars, we
identify nearly one hundred candidates for such wide binary systems: a faint WD
whose GPS1 proper motion matches that of a brighter MS star in Gaia/TGAS with a
good parallax (). We model the WD's multi-band
photometry with the BASE-9 code using this precise distance (assumed to be
common for the pair) and infer ages for each binary system. The resulting age
estimates are precise to () for () MS-WD systems.
Our analysis more than doubles the number of MS-WD systems with precise
distances known to date, and it boosts the number of such systems with precise
age determination by an order of magnitude. With the advent of the Gaia DR2
data, this approach will be applicable to a far larger sample, providing ages
for many MS stars (that can yield detailed abundances for over 20 elements),
especially in the age range 2 to 8\,\Gyr, where there are only few known star
clusters.Comment: 9 pages, 5 figures, 1 catalog; Submitted to Ap
A Search for Planetary Nebulae With the SDSS: the outer regions of M31
We have developed a method to identify planetary nebula (PN) candidates in
imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the
SDSS' five-band sampling of emission lines in PN spectra, which results in a
color signature distinct from that of other sources. Selection criteria based
on this signature can be applied to nearby galaxies in which PNe appear as
point sources. We applied these criteria to the whole area of M31 as scanned by
the SDSS, selecting 167 PN candidates that are located in the outer regions of
M31. The spectra of 80 selected candidates were then observed with the 2.2m
telescope at Calar Alto Observatory. These observations and cross-checks with
literature data show that our method has a selection rate efficiency of about
90%, but the efficiency is different for the different groups of PNe
candidates.
In the outer regions of M31, PNe trace different well-known morphological
features like the Northern Spur, the NGC205 Loop, the G1 Clump, etc. In
general, the distribution of PNe in the outer region 8<R<20 kpc along the minor
axis shows the "extended disk" - a rotationally supported low surface
brightness structure with an exponential scale length of 3.21+/-0.14 kpc and a
total mass of ~10^10 M_{\sun}, which is equivalent to the mass of M33. We
report the discovery of three PN candidates with projected locations in the
center of Andromeda NE, a very low surface brightness giant stellar structure
in the outer halo of M31. Two of the PNe were spectroscopically confirmed as
genuine PNe. These two PNe are located at projected distances along the major
axis of ~48 Kpc and ~41 Kpc from the center of M31 and are the most distant PNe
in M31 found up to now.Comment: 58 pages, 17 figures, 2 tables, Accepted to Astronomical Journa
Results from the CASTLES Survey of Gravitational Lenses
We show that most gravitational lenses lie on the passively evolving
fundamental plane for early-type galaxies. For burst star formation models (1
Gyr of star formation, then quiescence) in low Omega_0 cosmologies, the stellar
populations of the lens galaxies must have formed at z_f > 2. Typical lens
galaxies contain modest amounts of patchy extinction, with a median
differential extinction for the optical (radio) selected lenses of E(B-V) =
0.04 (0.07) mag. The dust can be used to determine both extinction laws and
lens redshifts. For example, the z_l=0.96 elliptical lens in MG0414+0534 has an
R_V=1.7 +/- 0.1 mean extinction law. Arc and ring images of the quasar and AGN
source host galaxies are commonly seen in NICMOS H band observations. The hosts
are typically blue, L < L_* galaxies.Comment: 12 pages, 10 figures, from Proceedings of the 9th Annual Astrophysics
Conference in Maryland, After the Dark Ages: When Galaxies Were Youn
Physical Sources of Scatter in the Tully-Fisher Relation
We analyze residuals from the Tully-Fisher relation for the emission-line
galaxies in the Nearby Field Galaxy Survey, a broadly representative survey
designed to fairly sample the variety of galaxy morphologies and environments
in the local universe. For spirals brighter than M_R^i=-18, we find strong
correlations between Tully-Fisher residuals and both B-R color and EW(Halpha).
The extremes of the correlations are populated by Sa galaxies, which show
consistently red colors, and spirals with morphological peculiarities, which
are often blue. If we apply an EW(Halpha)-dependent or B-R color-dependent
correction term to the Tully-Fisher relation, the scatter in the relation no
longer increases from R to B to U but instead drops to a nearly constant level
close to the scatter we expect from measurement errors. We argue that these
results probably reflect correlated offsets in luminosity and color as a
function of star formation history. Broadening the sample in morphology and
luminosity, we find that most non-spirals brighter than M_R^i=-18 follow the
same correlations as do spirals, albeit with greater scatter. However, the
color and EW(Halpha) correlations do not apply to galaxies fainter than
M_R^i=-18 or to emission-line S0 galaxies with anomalous gas kinematics. For
the dwarf galaxy population, the parameters controlling Tully-Fisher residuals
are instead related to the degree of recent disturbance: overluminous dwarfs
have higher rotation curve asymmetries, brighter U-band effective surface
brightnesses, and shorter gas consumption timescales than their underluminous
counterparts. As a result, sample selection strongly affects the measured
faint-end slope of the Tully-Fisher relation. Passively evolving, rotationally
supported galaxies display a break toward steeper slope at low luminosities.Comment: 58 pages including 21 figures, AJ, accepte
Constraints on the Space Density of Methane Dwarfs and the Substellar Mass Function from a Deep Near-Infrared Survey
We report preliminary results of a deep near-infrared search for
methane-absorbing brown dwarfs; almost five years after the discovery of Gl
229b, there are only a few confirmed examples of this type of object. New J
band, wide-field images, combined with pre-existing R band observations, allow
efficient identification of candidates by their extreme (R-J) colours.
Follow-up measurements with custom filters can then confirm objects with
methane absorption. To date, we have surveyed a total of 11.4 square degrees to
J~20.5 and R~25. Follow-up CH_4 filter observations of promising candidates in
1/4 of these fields have turned up no methane absorbing brown dwarfs. With 90%
confidence, this implies that the space density of objects similar to Gl 229b
is less than 0.012 per cubic parsec. These calculations account for the
vertical structure of the Galaxy, which can be important for sensitive
measurements. Combining published theoretical atmospheric models with our
observations sets an upper limit of alpha <= 0.8 for the exponent of the
initial mass function power law in this domain.Comment: 11 pages + 2 figures To be published in Astrophysical Journal Letter
Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift
A tangential distortion of background source galaxies around foreground lens
galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An
important element of our analysis is the use of photometric redshifts to
determine distances of lens and source galaxies and rest-frame B-band
luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher
relation between halo circular velocity and luminosity; the typical lens
galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/-40 km/s at M_B
= -18.5, if q_0 = 0.5. Control tests, in which lens and source positions and
source ellipticities are randomized, confirm the significance level of the
detection quoted above. Furthermore, a marginal signal is also detected from an
independent, fainter sample of source galaxies without photometric redshifts.
Potential systematic effects, such as contamination by aligned satellite
galaxies, the distortion of source shapes by the light of the foreground
galaxies, PSF anisotropies, and contributions from mass distributed on the
scale of galaxy groups are shown to be negligible. A comparison of our result
with the local Tully-Fisher relation indicates that intermediate-redshift
galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed
circular velocity. This is consistent with some spectroscopic studies of the
rotation curves of intermediate-redshift galaxies. This result suggests that
the strong increase in the global luminosity density with redshift is dominated
by evolution in the galaxy number density.Comment: Revised version with minor changes. 13 pages, 7 figures, LaTeX2e,
uses emulateapj and multicol styles (included). Accepted by Ap
- …
