67 research outputs found

    A Computational Approach to Analyze the Mechanism of Action of the Kinase Inhibitor Bafetinib

    Get PDF
    Prediction of drug action in human cells is a major challenge in biomedical research. Additionally, there is strong interest in finding new applications for approved drugs and identifying potential side effects. We present a computational strategy to predict mechanisms, risks and potential new domains of drug treatment on the basis of target profiles acquired through chemical proteomics. Functional protein-protein interaction networks that share one biological function are constructed and their crosstalk with the drug is scored regarding function disruption. We apply this procedure to the target profile of the second-generation BCR-ABL inhibitor bafetinib which is in development for the treatment of imatinib-resistant chronic myeloid leukemia. Beside the well known effect on apoptosis, we propose potential treatment of lung cancer and IGF1R expressing blast crisis

    Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

    Get PDF
    Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib

    No full text
    Following the initial success of imatinib as frontline therapy for chronic myeloid leukemia (CML), several second-generation therapeutics have been developed with increased potency and the ability to inhibit the majority of imatinib-resistant mutations. Here, we review the current knowledge about the target specificity of the two new inhibitors nilotinib and dasatinib in comparison to imatinib, including the recent large-scale chemical proteomics screens

    Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer

    No full text
    Several selective CDK4/6 inhibitors are in clinical trials for non-small cell lung cancer (NSCLC). Palbociclib (PD0332991) is included in the phase II/III Lung-MAP trial for squamous cell lung carcinoma (LUSQ). We noted differential cellular activity between palbociclib and the structurally related ribociclib (LEE011) in LUSQ cells. Applying an unbiased mass spectrometry-based chemoproteomics approach in H157 cells and primary tumor samples, we here report distinct proteome-wide target profiles of these two drug candidates in LUSQ, which encompass novel protein and, for palbociclib only, lipid kinases. In addition to CDK4 and 6, we observed CDK9 as a potent target of both drugs. Palbociclib interacted with several kinases not targeted by ribociclib, such as casein kinase 2 and PIK3R4, which regulate autophagy. Furthermore, palbociclib engaged several lipid kinases, most notably, PIK3CD and PIP4K2A/B/C. Accordingly, we observed modulation of autophagy and inhibition of AKT signaling by palbociclib but not ribociclib
    • …
    corecore