1 research outputs found
Wave-like patterns of plant phenology determine ungulate movement tactics
Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is
predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e.,
hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called
‘‘green-wave surfing’’ [3–5]. Yet general principles describing how the dynamic nature of resources determine
movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence
of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially
across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of greenup
facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate
species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent
between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For
decades, ecologists have sought to understand how animals move to select habitat, commonly defining
habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function
of the flux of resources across space and time, underscoring the need to redefine habitat to include its
dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate
change [10], our synthesis provides a generalizable framework to understand how animal movement will
be influenced by altered patterns of resource phenology