71 research outputs found

    Report on the meta-analysis of crop modelling for climate change and food security survey

    Get PDF

    Changes in soil properties with long-term organic inputs due to distance from homestead and farm characteristics in southern Ethiopian farmlands

    Get PDF
    Open access via the Elsevier Agreement This original data was collected as part of the project ‘Alternative Carbon Investments in Ecosystems for Poverty Alleviation –below ground versus above ground opportunities for restoration of ecosystem services’ (ALTER), funded with support from the Ecosystem Services for Poverty Alleviation (ESPA) programme (grant no. NE/K010441/1). The analysis of the data and preparation of this paper was undertaken as part of the RALENTIR (Reducing land degradation and carbon loss from Ethiopia's soils to strengthen livelihoods and resilience) project, funded by GCRF (Global Challenges Research Fund) and University of Aberdeen (grant number ES/T003073/1).Peer reviewedPublisher PD

    Ecosystem-based interventions and farm household welfare in degraded areas: Comparative evidence from Ethiopia

    Get PDF
    Agricultural productivity and farm household welfare in areas of severe land degradation can be improved through ecosystem-based interventions. Decisions on the possible types of practices and investments can be informed using evidence of potential benefits. Using farm household data together with a farm level stochastic simulation model provides an initial quantification of farm income and nutrition outcomes that can be generated over a five year period from manure and compost based organic amendment of crop lands. Simulated results show positive income and nutrition impacts. Mean farm income increases by 13% over the planning period, from US32,833underthebusinessasusualsituation(applicationof50kgDAPand25kgureaha−1yr−1)toUS32,833 under the business as usual situation (application of 50 kg DAP and 25 kg urea ha− 1 yr− 1) to US37,172 under application of 10 t ha− 1 yr− 1 farm yard manure during the first three years and 5 t ha− 1 yr− 1 during the last two years. As a result of organic soil amendment, there is an associated increase in the available calorie, protein, fat, calcium, and iron per adult equivalent, giving the improvement in farm household nutrition. The evidence is substantive enough to suggest the promotion and adoption at scale, in degraded ecosystems, of low cost organic soil amendment practices to improve agricultural productivity and subsequent changes in farm household welfare

    ``Agro-meteorological indices and climate model uncertainty over the UK''

    Get PDF
    Five stakeholder-relevant indices of agro-meteorological change were analysed for the UK, over past (1961--1990) and future (2061--2090) periods. Accumulated Frosts, Dry Days, Growing Season Length, Plant Heat Stress and Start of Field Operations were calculated from the E-Obs (European Observational) and HadRM3 (Hadley Regional Climate Model) PPE (perturbed physics ensemble) data sets. Indices were compared directly and examined for current and future uncertainty. Biases are quantified in terms of ensemble member climate sensitivity and regional aggregation. Maps of spatial change then provide an appropriate metric for end-users both in terms of their requirements and statistical robustness. A future UK is described with fewer frosts, fewer years with a large number of frosts, an earlier start to field operations (e.g., tillage), fewer occurrences of sporadic rainfall, more instances of high temperatures (in both the mean and upper range), and a much longer growing season

    Analysing urban heat island patterns and simulating potential future changes

    Get PDF
    Climate change is interpreted as one of the most serious environmental problems for the 21st century. Changes in climate are now generally accepted. However, the rate of change has spatial characteristics and is highly uncertain. The Himalaya is experiencing abrupt change; so vulnerability and adaptation studies have become crucial. This pilot study presents initial findings of the research project entitled ‘Human Ecological Implications of Climate Change in the Himalaya.’ A study of climate change perceptions, vulnerability, and adaptation strategies of farming communities of the cool-wet temperate (Lumle) and the hot-wet sub-tropical (Meghauli) villages in Central Nepal was conducted. The findings are derived from the analysis of temperature and precipitation data of last 40 years, and primary data collected in September 2012. Focus Group Discussions, Key Informant Interviews, and Historical Timeline Calender were applied. The changes perceived by the communities are fairly consistent with the meteorological observations and are challenging the sustainability of social-ecological systems and communities’ livelihoods. Farming communities have adopted some strategies to minimize the vulnerability. But the adopted strategies have produced both negative and positive results. Strategies like flood control, shifting crop calendars, occupational changes and labour migrations have produced positive results in livelihood security. Occupational changes and labour migration have negatively impacted local agro-ecology and agricultural economies. Early-harvesting strategies to reduce losses from hailstorm have reduced the food and fodder security. Lack of irrigation for rice-seedlings is severely affecting the efficacy of shifting the rice-transplantation calendar. Conclusions suggest that while farmers have practiced strategies to better management of farms, livelihood sustainabilities are reaching thresholds due to the changing conditions.Rishikesh Pandey, Douglas K Bardsle

    Measuring the vulnerability of Scottish soils to a changing climate

    Get PDF
    The second Scottish Climate Change Adaptation Programme (SCCAP) identifies soil health as a priority research area to support sustainable soil management and ecosystem services. This follows concerns over a perceived lack of data or gaps in understanding that have been raised in both independent assessments of the first SCCAP by the Committee on Climate Change. The aim of this study is to summarise previous work on Scottish soils, explore existing datasets, and identify those metrics which could support the monitoring of Scotland’s soil health and measure the vulnerability of Scottish soils to climate change in future

    Predicting Impacts of Climate Change on Fasciola hepatica Risk

    Get PDF
    Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits

    Crop modelling: towards locally relevant and climate-informed adaptation

    No full text
    A gap between the potential and practical realisation of adaptation exists: adaptation strategies need to be both climate-informed and locally relevant to be viable. Place-based approaches study local and contemporary dynamics of the agricultural system, whereas climate impact modelling simulates climate-crop interactions across temporal and spatial scales. Crop-climate modelling and place-based research on adaptation were strategically reviewed and analysed to identify areas of commonality, differences, and potential learning opportunities to enhance the relevance of both disciplines through interdisciplinary approaches. Crop-modelling studies have projected a 7–15% mean yield change with adaptation compared to a non-adaptation baseline (Nature Climate Change 4:1–5, 2014). Of the 17 types of adaptation strategy identified in this study as place-based adaptations occurring within Central America, only five were represented in crop-climate modelling literature, and these were as follows: fertiliser, irrigation, change in planting date, change in cultivar and area cultivated. The breath and agency of real-life adaptation compared to its representation in modelling studies is a source of error in climate impact simulations. Conversely, adaptation research that omits assessment of future climate variability and impact does not enable to provide sustainable adaptation strategies to local communities so risk maladaptation. Integrated and participatory methods can identify and reduce these sources of uncertainty, for example, stakeholder’s engagement can identify locally relevant adaptation pathways. We propose a research agenda that uses methodological approaches from both the modelling and place-based approaches to work towards climate-informed locally relevant adaptation
    • 

    corecore