166 research outputs found
Protonated CO2 in massive star-forming clumps
Interstellar CO2 is an important reservoir of carbon and oxygen, and one of
the major constituents of the icy mantles of dust grains, but it is not
observable directly in the cold gas because has no permanent dipole moment. Its
protonated form, HOCO+, is believed to be a good proxy for gaseous CO2.
However, it has been detected in only a few star-forming regions so far, so
that its interstellar chemistry is not well understood. We present new
detections of HOCO+ lines in 11 high-mass star-forming clumps. Our observations
increase by more than three times the number of detections in star-forming
regions so far. We have derived beam-averaged abundances relative to H2 in
between 0.3 and 3.8 x 10^{-11}. We have compared these values with the
abundances of H13CO+, a possible gas-phase precursor of HOCO+, and CH3OH, a
product of surface chemistry. We have found a positive correlation with H13CO+,
while with CH3OH there is no correlation. We suggest that the gas-phase
formation route starting from HCO+ plays an important role in the formation of
HOCO+, perhaps more relevant than protonation of CO2 (upon evaporation of this
latter from icy dust mantles).Comment: 5 pages, 4 figures, 1 table, accepted for publication in MNRA
ALMA Observations of Ethyl Formate toward Orion KL
Orion KL is one of the prime templates of astrochemical and prebiotic
chemical studies. We wish to explore more organic molecules with increasing
complexity in this region. In particular, we have searched for one of the most
complex organic molecules detected in space so far, ethyl formate
(CHOCHO). This species is the next step in chemical complexity
after the simplest member of esters (methyl formate, CHOCHO). The
mechanisms leading to its formation are still poorly known. We have used high
angular resolution ( 1.5) ALMA observations covering a
large bandwidth from 214 to 247 GHz. We have detected 82 unblended lines of
CHOCHO (49 and 33 of the trans and gauche conformers,
respectively). The line images showed that CHOCHO arises mainly
from the compact ridge and the hot core-southwest regions. The derived
rotational temperatures and column densities are 122 34 K, (0.9
0.3) 10 cm for the hot core-SW, and 103 13 K, (0.6
0.3) 10 cm for the compact ridge. The comparison
of spatial distribution and abundance ratios with chemically related molecules
(methyl formate, ethanol and formic acid) indicates that CHOCHO is
likely formed on the surface of dust grains by addition of CH to
functional-group radicals (CHOCHO) derived from methyl formate
(CHOCHO)
The role of low-mass star clusters in massive star formation. The Orion Case
To distinguish between the different theories proposed to explain massive
star formation, it is crucial to establish the distribution, the extinction,
and the density of low-mass stars in massive star-forming regions. We analyze
deep X-ray observations of the Orion massive star-forming region using the
Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar
distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the
typical size of protostellar cores. We derived stellar density maps and
calculated cluster stellar densities. We found that low-mass stars cluster
toward the three massive star-forming regions: the Trapezium Cluster (TC), the
Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of
10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the
OHC. The close association between the low-mass star clusters with massive star
cradles supports the role of these clusters in the formation of massive stars.
The X-ray observations show for the first time in the TC that low-mass stars
with intermediate extinction are clustered toward the position of the most
massive star, which is surrounded by a ring of non-extincted low-mass stars.
This 'envelope-core' structure is also supported by infrared and optical
observations. Our analysis suggests that at least two basic ingredients are
needed in massive star formation: the presence of dense gas and a cluster of
low-mass stars. The scenario that better explains our findings assumes high
fragmentation in the parental core, accretion at subcore scales that forms a
low-mass stellar cluster, and subsequent competitive accretion. Finally,
although coalescence does not seem a common mechanism for building up massive
stars, we show that a single stellar merger may have occurred in the evolution
of the OHC cluster, favored by the presence of disks, binaries, and gas
accretion.Comment: 17 pages, 11 figures, 3 Tables. Accepted for publication in A&
On the chemical ladder of esters. Detection and formation of ethyl formate in the W51 e2 hot molecular core
The detection of organic molecules with increasing complexity and potential
biological relevance is opening the possibility to understand the formation of
the building blocks of life in the interstellar medium. One of the families of
molecules with astrobiological interest are the esters, whose simplest member,
methyl formate, is rather abundant in star-forming regions. The next step in
the chemical complexity of esters is ethyl formate, CHOCHO. Only two
detections of this species have been reported so far, which strongly limits our
understanding of how complex molecules are formed in the interstellar medium.
We have searched for ethyl formate towards the W51 e2 hot molecular core, one
of the most chemically rich sources in the Galaxy and one of the most promising
regions to study prebiotic chemistry, especially after the recent discovery of
the PO bond, key in the formation of DNA. We have analyzed a spectral line
survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2
and 3 mm bands, carried out with the IRAM 30m telescope. We report the
detection of the trans and gauche conformers of ethyl formate. A Local
Thermodynamic Equilibrium analysis indicates that the excitation temperature is
7810 K and that the two conformers have similar source-averaged column
densities of (2.00.3)10 cm and an abundance of
10. We compare the observed molecular abundances of ethyl formate
with different competing chemical models based on grain surface and gas-phase
chemistry. We propose that grain-surface chemistry may have a dominant role in
the formation of ethyl formate (and other complex organic molecules) in hot
molecular cores, rather than reactions in the gas phase.Comment: Accepted in A&A; 11 pages, 6 figures, 7 Table
First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293-2422
The formyl radical HCO has been proposed as the basic precursor of many
complex organic molecules such as methanol (CHOH) or glycolaldehyde
(CHOHCHO). Using ALMA, we have mapped, for the first time at high angular
resolution (1, 140 au), HCO towards the Solar-type
protostellar binary IRAS 162932422, where numerous complex organic molecules
have been previously detected. We also detected several lines of the chemically
related species HCO, CHOH and CHOHCHO. The observations revealed
compact HCO emission arising from the two protostars. The line profiles also
show redshifted absorption produced by foreground material of the circumbinary
envelope that is infalling towards the protostars. Additionally, IRAM 30m
single-dish data revealed a more extended HCO component arising from the common
circumbinary envelope. The comparison between the observed molecular abundances
and our chemical model suggests that whereas the extended HCO from the envelope
can be formed via gas-phase reactions during the cold collapse of the natal
core, the HCO in the hot corinos surrounding the protostars is predominantly
formed by the hydrogenation of CO on the surface of dust grains and subsequent
thermal desorption during the protostellar phase. The derived abundance of HCO
in the dust grains is high enough to produce efficiently more complex species
such as HCO, CHOH, and CHOHCHO by surface chemistry. We found that
the main formation route of CHOHCHO is the reaction between HCO and
CHOH.Comment: Accepted in Monthly Notices of the Royal Astronomical Society; 19
pages, 12 figures, 7 table
- …