4 research outputs found

    Clinical and outcome comparison of genetically positive vs. negative patients in a large cohort of suspected familial hypocalciuric hypercalcemia

    Get PDF
    Biochemical suspicion of familial hypocalciuric hypercalcemia (FHH) might provide with a negative (FHH-negative) or positive (FHH-positive) genetic result. Understanding the differences between both groups may refine the identification of those with a positive genetic evaluation, aid management decisions and prospective surveillance. We aimed to compare FHH-positive and FHH-negative patients, and to identify predictive variables for FHH-positive cases. Retrospective, national multi-centre study of patients with suspected FHH and genetic testing of the CASR, AP2S1 and GNA11 genes. Clinical, biochemical, radiological and treatment data were collected. We established a prediction model for the identification of FHH-positive cases by logistic regression analysis and area under the ROC curve (AUROC) was estimated. We included 66 index cases, of which 30 (45.5%) had a pathogenic variant. FHH-positive cases were younger (p = 0.029), reported more frequently a positive family history (p < 0.001), presented higher magnesium (p < 0.001) and lower parathormone levels (p < 0.001) and were less often treated for hypercalcemia (p = 0.017) in comparison to FHH-negative cases. Magnesium levels showed the highest AUROC (0.825, 95%CI: 0.709-0.941). The multivariate analysis revealed that family history and magnesium levels were independent predictors of a positive genetic result. The predictive model showed an AUROC of 0.909 (95%CI: 0.826-0.991). The combination of magnesium and a positive family history offered a good diagnostic accuracy to predict a positive genetic result. Therefore, the inclusion of magnesium measurement in the routine evaluation of patients with suspected FHH might provide insight into the identification of a positive genetic result of any of the CaSR-related genes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Increased sLRP1 and decreased atrial natriuretic peptide plasma levels in newly diagnosed T2DM patients are normalized after optimization of glycemic control

    Get PDF
    Low-density lipoprotein receptor-related protein 1 (LRP1) negatively modulates circulating atrial natriuretic peptide (ANP) levels. Both molecules are involved in the regulation of cardiometabolism. To evaluate soluble LRP1 (sLRP1) and ANP levels in people with newly diagnosed type 2 diabetes mellitus (T2DM) and determine the effects of metabolic optimization. This single-center longitudinal observational study recruited patients with newly diagnosed T2DM (n = 29, HbA1c > 8.5%), and 12 healthy control, age- and sex-matched volunteers. sLRP1 and ANP levels were measured by immunoassays at T2DM onset and at one year after optimization of glycemic control (HbA1c ≤ 6.5%). T2DM had higher sLRP1 levels than the control group (p = 0.014) and lower ANP levels (p =0.002). At 12 months, 23 T2DM patients reached the target of HbA1c ≤ 6.5%. These patients significantly reduced sLRP1 and increased ANP levels. Patients who did not achieve HbA1c < 6.5% failed to normalize sLRP1 and ANP levels. There was an inverse correlation in the changes in sLRP1 and ANP (p = 0.031). The extent of sLRP1 changes over 12 months of metabolic control positively correlated with those of total cholesterol, LDL cholesterol, TG, TG/HDLc, and apolipoprotein B. Newly diagnosed T2DM patients have an increased sLRP1/ANP ratio, and increased sLRP1 and decreased ANP levels are normalized in the T2DM patients that reached an strict glycemic and metabolic control. sLRP1/ANP ratio could be a reliable marker of cardiometabolic function

    Estudio de Salud de la Ciudad de Madrid 2018. Diseño y principales resultados.

    No full text
    Los objetivos del Estudio de Salud de 2018 se diseña con el fin de recoger, entre otros, los indicadores recomendados por la OMS, que señala la manera de luchar contra las desigualdades, visibilizándolas y miidiéndolas. En este ámbito este estudio es una de las aportaciones que hace Madrid Salud para combatirlasN
    corecore