51 research outputs found

    Determination of nicarbazin as dinitrocarbanilide residues in chicken feed, breast and litter.

    Get PDF
    Abstract: To control coccidiosis, a common disease in commercial broiler production, anticoccidials are added to feed. However, concerns about the deposition of anticoccidial residues in chicken breast do exist. Brazilian law allows 200 μg kg-1 of nicarbazin (main chicken anticoccidial) residue in chicken breast, but demands its withdrawal from feed 10 days before slaughter, to avoid its presence in chicken breast. The present research aimed at raising chickens for 42 days and subject them to three treatments with anticoccidials by analyzing nicarbazin residues as dinitrocarbanilide (DNC) in feed, breast and poultry litter. The results showed that feed and breast had DNC levels within the legislation, therefore chicken breast is safe for human consumption. Also, shortly after nicarbazin removal from feed, DNC concentration dropped in poultry litter by about 50% in all treatments. Resumo ? Para controlar a coccidiose, doença comum na produção comercial de frangos de corte, são adicionados anticoccidianos à ração. No entanto, preocupações sobre a deposição de resíduos de anticoccidianos no peito de frango existem. A legislação brasileira permite 200 μg kg-1 de resíduo de nicarbazina (principal anticoccidiano) no peito de frango, porém exige que seja retirado da ração 10 dias antes do abate, para evitar sua presença no peito de frango. A presente pesquisa objetivou criar frangos por 42 dias e submete-los a três tratamentos com anticoccidianos, analisando resíduos de nicarbazina na forma de dinitrocarbanilida (DNC) na ração, peito e cama de aviário. Os resultados mostraram que na ração e no peito, todos níveis de DNC se mantiveram dentro da legislação, sendo o peito de frango seguro para consumo humano. Ainda, logo após a retirada da nicarbazina da ração, a concentração de DNC na cama de aviário caiu cerca de 50% em todos tratamentos.bitstream/item/219013/1/final9387.pd

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar

    No full text
    The Khor Al-Adaid sabkha in Qatar is among the rare extreme environments on Earth where it is possible to study the formation of dolomite-a carbonate mineral whose origin remains unclear and has been hypothetically linked to microbial activity. By combining geochemical measurements with microbiological analysis, we have investigated the microbial mats colonizing the intertidal areas of sabhka. The main aim of this study was to identify communities and conditions that are favorable for dolomite formation. We inspected and sampled two locations. The first site was colonized by microbial mats that graded vertically from photo-oxic to anoxic conditions and were dominated by cyanobacteria. The second site, with higher salinity, had mats with an uppermost photo-oxic layer dominated by filamentous anoxygenic photosynthetic bacteria (FAPB), which potentially act as a protective layer against salinity for cyanobacterial species within the deeper layers. Porewater in the uppermost layers of the both investigated microbial mats was supersaturated with respect to dolomite. Corresponding to the variation of the microbial community's vertical structure, a difference in crystallinity and morphology of dolomitic phases was observed: dumbbell-shaped proto-dolomite in the mats dominated by cyanobacteria and rhombohedral ordered-dolomite in the mat dominated by FAPB.This publication was made possible by NPRP Grant 7-443-1-083 from the Qatar National Research Fund (a member of Qatar Foundation). MD was supported by the National Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) and the Canada Foundation for Innovation and Ontario Research Fund (Leaders Opportunity Fund, Grant Number 22404). The statements made herein are solely the responsibility of the authors. The authors would like to acknowledge Oleksandra Kaskun for performing alkalinity measurements, Dr. K. Tait at the Royal Ontario Museum for use of XRD and Sal Boccia at the Ontario Centre for the Characterizations of Advanced Materials (OCCAM) for the assistance with SEM imaging.Scopu

    The NuSTAR view of reflection and absorption in NGC 7582

    Get PDF
    NGC 7582 is a well-studied X-ray bright Seyfert 2 with moderately heavy (NH ~ 1023 - 1024 cm-2), highly variable absorption and strong reflection spectral features. The spectral shape changed around the year 2000, dropping in observed flux and becoming much more highly absorbed. Two scenarios have been put forth to explain this spectral change: (1) the central X-ray source partially "shut off" around this time, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light-crossing time of the Compton-thick material or (2) the source became more heavily obscured, with only a portion of the power law continuum leaking through. NuSTAR observed NGC 7582 twice in 2012, two weeks apart, in order to quantify the reflection using high-quality data above 10 keV. We find that the most plausible scenario is that NGC 7582 has recently become more heavily absorbed by a patchy torus with a covering fraction of ~80%–90% and an equatorial column density of ~ 3 ×1024 cm-2. We find the need for an additional highly variable full-covering absorber with NH = (4–6) × 1023 cm-2 in the line of sight, possibly associated with a hidden broad line region

    The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron Kalpha line

    No full text
    We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad-band spectra (in the 3-80 keV range) indicate a cutoff energy E-c > 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton-thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K alpha line on time-scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole)
    • …
    corecore