6,739 research outputs found

    Evaluating Responses of Sugar Beet Cultivars to Fusarium Species in Greenhouse and Field Conditions

    Get PDF
    Fusarium yellows of sugar beet (Beta vulgaris L.) is becoming an important disease in Minnesota and North Dakota in the United States. One of the best ways to manage Fusarium yellows is to develop and use resistant cultivars. Responses of eight sugar beet cultivars to three Fusarium species were determined in the greenhouse and compared to the responses of the same eight cultivars grown in a field already infected by Fusarium yellows. There were significant and appreciable relationships between greenhouse and field studies for responses of eight sugar beet cultivars on Fusarium yellows. The estimated correlation coefficient for area under disease progress curve (AUDPC) between observations in fields and those in greenhouses was 0.987 (p<0.01). The mean AUDPC were significantly different among cultivars (p<0.01) in the greenhouse and in the field studies. Of the cultivars, Van der Have 46177 was the most susceptible, but Crystal R434 the most resistant. Crystal 820, Van der Have 66561, and Beta 4797R were resistant, and Beta 4818R, Seedex Magnum, and Hilleshog 2463Rz were moderately resistant. There was a strong negative relationship between the AUDPC and recoverable sucrose yield in the field experiments and the estimated coefficient of determination was 0.939 (p<0.01). It was concluded that greenhouse screening can act as a useful and reliable means to evaluate and select beet germplasms and/or accessions for resistance to Fusarium yellows.Peer reviewe

    Manifestation of geometric resonance in current dependence of AC susceptibility for unshunted array of Nb-AlOx-Nb Josephson junctions

    Full text link
    A pronounced resonance-like structure has been observed in the current dependence of AC susceptibility for two-dimensional array of unshunted Nb-AlOx-Nb Josephson junctions. Using a single-plaquette approximation, we were able to successfully fit our data assuming that resonance structure is related to the geometric (inductive) properties of the array.Comment: to appear in Physica C (in press

    Universal R-C crossover in current-voltage characteristics for unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions

    Full text link
    We report on some unusual behavior of the measured current-voltage characteristics (CVC) in artificially prepared two-dimensional unshunted array of overdamped Nb-AlO_x-Nb Josephson junctions. The obtained nonlinear CVC are found to exhibit a pronounced (and practically temperature independent) crossover at some current I_{cr}=\left(\frac{1}{2\beta_C}-1\right)I_C from a resistance R dominated state with V_R=R\sqrt{I^2-I_C^2} below I_{cr} to a capacitance C dominated state with V_C=\sqrt{\frac{\hbar}{4eC}} \sqrt{I-I_C} above I_{cr}. The origin of the observed behavior is discussed within a single-plaquette approximation assuming the conventional RSJ model with a finite capacitance and the Ambegaokar-Baratoff relation for the critical current of the single junction

    Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    Get PDF
    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated

    Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    Get PDF
    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station

    On Field Induced Diaelastic Effect in a Small Josephson Contact

    Full text link
    An analog of the diaelastic effect is predicted to occur in a small Josephson contact with Josephson vortices manifesting itself as magnetic field induced softening of the contact shear modulus C(T,H). In addition to Fraunhofer type field oscillations, C(T,H) is found to exhibit pronounced flux driven temperature oscillations near T_C

    Manifestation of finite temperature size effects in nanogranular magnetic graphite

    Full text link
    In addition to the double phase transition (with the Curie temperatures T_C=300K and T_{Ct}=144K), a low-temperature anomaly in the dependence of the magnetization is observed in the bulk magnetic graphite (with an average granular size of L=10nm), which is attributed to manifestation of the size effects below the quantum temperature. The best fits of the high-temperature data (using the mean-field Curie-Weiss and Bloch expressions) produced reasonable estimates for the model parameters, such as defects mediated effective spin exchange energy J=12meV (which defines the intragranular Curie temperature T_C) and proximity mediated interactions between neighboring grains (through potential barriers created by thin layers of non-magnetic graphite) with energy J_t=exp(-d/s)J=5.8meV (which defines the intergranular Curie temperature T_{Ct}) with d=1.5nm and s=2nm being the intergranular distance and characteristic length, respectively

    The benchmark aeroelastic models program: Description and highlights of initial results

    Get PDF
    An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of rigid wing with a NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations

    Pinning of spiral fluxons by giant screw dislocations in YBa_2Cu_3O_7 single crystals: Josephson analog of the fishtail effect

    Full text link
    By using a highly sensitive homemade AC magnetic susceptibility technique, the magnetic flux penetration has been measured in YBa_2Cu_3O_7 single crystals with giant screw dislocations (having the structure of the Archimedean spirals) exhibiting a=3 spiral turnings, the pitch b=18.7 microns and the step height c=1.2nm (the last parameter is responsible for creation of extended weak-link structure around the giant defects). The magnetic field applied parallel to the surface enters winding around the weak-link regions of the screw in the form of the so-called spiral Josephson fluxons characterized by the temperature dependent pitch b_f(T). For a given temperature, a stabilization of the fluxon structure occurs when b_f(T) matches b (meaning an optimal pinning by the screw dislocations) and manifests itself as a pronounced low-field peak in the dependence of the susceptibility on magnetic field (applied normally to the surface) in the form resembling the high-field (Abrikosov) fishtail effect.Comment: see also http://www.jetpletters.ac.ru/ps/1886/article_28701.shtm
    • …
    corecore