44 research outputs found

    Internal and relative motions of the Taurus and Ophiuchus star-forming regions

    Full text link
    We investigate the internal and relative motions of the Taurus and Ophiuchus star-forming regions using a sample of young stars with accurately measured radial velocities and proper motions. We find no evidence for expansion or contraction of the Taurus complex, but a clear indication for a global rotation, resulting in velocity gradients, this suggests a common origin, possibly related to that of Gould's Belt.Comment: 2 figure

    The Gould's Belt Very Large Array Survey III. The Orion region

    Get PDF
    We present results from a high-sensitivity (60 μ\muJy), large-scale (2.26 square degree) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known Young Stellar Objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous results from the Gould's Belt Survey. Our detections provide target lists for followup VLBA radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.Comment: Accepted for publication in ApJ; 51 pages, 15 figures, 5 table

    Filamin B Regulates Chondrocyte Proliferation and Differentiation through Cdk1 Signaling

    Get PDF
    Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes. Within the shortened growth plate of postnatal FlnB−/− mice long bone, we observed a similarly progressive decline in the number of rapidly proliferating chondrocytes and premature differentiation characterized by an enlarged prehypertrophic zone, a widened Col2a1+/Col10a1+ overlapping region, but relatively reduced hypertrophic zone length. The reduced chondrocyte proliferation and premature differentiation were, in part, attributable to enhanced G2/M phase progression, where fewer FlnB deficient ATDC5 chondrocytes resided in the G2/M phase of the cell cycle. FlnB loss reduced Cdk1 phosphorylation (an inhibitor of G2/M phase progression) and Cdk1 inhibition in chondrocytes mimicked the null FlnB, premature differentiation phenotype, through a β1-integrin receptor- Pi3k/Akt (a key regulator of chondrocyte differentiation) mediated pathway. In this context, the early prehypertrophic differentiation provides an explanation for the premature differentiation seen in this disorder, whereas the progressive decline in proliferating chondrocytes would ultimately lead to reduced chondrocyte production and shortened bone length. These findings begin to define a role for filamin proteins in directing both cell proliferation and differentiation through indirect regulation of cell cycle associated proteins

    The Gould's Belt Very Large Array Survey. IV. The Taurus-Auriga Complex

    Get PDF
    We present a multi-epoch radio study of the Taurus-Auriga star-forming complex made with the Karl G. Jansky Very Large Array at frequencies of 4.5 GHz and 7.5 GHz. We detect a total of 610 sources, 59 of which are related to young stellar objects (YSOs) and 18 to field stars. The properties of 56% of the young stars are compatible with non-thermal radio emission. We also show that the radio emission of more evolved YSOs tends to be more non-thermal in origin and, in general, that their radio properties are compatible with those found in other star-forming regions. By comparing our results with previously reported X-ray observations, we notice that YSOs in Taurus-Auriga follow a Güdel-Benz relation with κ = 0.03, as we previously suggested for other regions of star formation. In general, YSOs in Taurus-Auriga and in all the previous studied regions seem to follow this relation with a dispersion of ~1 dex. Finally, we propose that most of the remaining sources are related with extragalactic objects but provide a list of 46 unidentified radio sources whose radio properties are compatible with a YSO nature

    Radio Measurements of the stellar proper motions in the core of the Orion Nebula Cluster

    Get PDF
    Sergio A. Dzib, et al, 'RADIO MEASUREMENTS OF THE STELLAR PROPER MOTIONS IN THE CORE OF THE ORION NEBULA CLUSTER', The Astrophysical Journal, Vol. 834(2), 10 pp, January 2017. doi:10.3847/1538-4357/834/2/139 © 2017. The American Astronomical Society. All rights reserved.Using multi-epoch VLA observations, covering a time baseline of 29.1 years, we have measured the proper motions of 88 young stars with compact radio emission in the core of the Orion Nebula Cluster (ONC) and the neighboring BN/KL region. Our work increases the number of young stars with measured proper motion at radio frequencies by a factor of 2.5 and enables us to perform a better statistical analysis of the kinematics of the region than was previously possible. Most stars (79 out of 88) have proper motions consistent with a Gaussian distribution centered on μαcosδ=1.07±0.09masyr1\overline{\mu_{\alpha}\cos{\delta}}=1.07\pm0.09\quad{\rm mas\,yr^{-1}}, and μδ=0.84±0.16masyr1\overline{\mu_{\delta}}=-0.84\pm0.16\quad{\rm mas\,yr^{-1}}, with velocity dispersions of σα=1.08±0.07masyr1,\sigma_{\alpha}=1.08\pm0.07\quad{\rm mas\,\,yr^{-1}}, σδ=1.27±0.15masyr1\sigma_{\delta}=1.27\pm0.15\quad{\rm mas\,\,yr^{-1}}. We looked for organized movements of these stars but found no clear indication of radial expansion/contraction or rotation. The remaining nine stars in our sample show peculiar proper motions that differ from the mean proper motions of the ONC by more than 3-σ\sigma. One of these stars, V 1326 Ori, could have been expelled from the Orion Trapezium 7,000 years ago. Two could be related to the multi-stellar disintegration in the BN/KL region, in addition to the previously known sources BN, I and n. The others either have high uncertainties (so their anomalous proper motions are not firmly established) or could be foreground objects.Peer reviewedFinal Published versio

    The Gould's Belt Very Large Array Survey. I. The Ophiuchus Complex

    Get PDF
    We present large-scale (~2000 arcmin^2), deep (~20 μJy), high-resolution (~1") radio observations of the Ophiuchus star-forming complex obtained with the Karl G. Jansky Very Large Array at λ = 4 and 6 cm. In total, 189 sources were detected, 56 of them associated with known young stellar sources, and 4 with known extragalactic objects; the other 129 remain unclassified, but most of them are most probably background quasars. The vast majority of the young stars detected at radio wavelengths have spectral types K or M, although we also detect four objects of A/F/B types and two brown dwarf candidates. At least half of these young stars are non-thermal (gyrosynchrotron) sources, with active coronas characterized by high levels of variability, negative spectral indices, and (in some cases) significant circular polarization. As expected, there is a clear tendency for the fraction of non-thermal sources to increase from the younger (Class 0/I or flat spectrum) to the more evolved (Class III or weak line T Tauri) stars. The young stars detected both in X-rays and at radio wavelengths broadly follow a Güdel-Benz relation, but with a different normalization than the most radioactive types of stars. Finally, we detect a ~70 mJy compact extragalactic source near the center of the Ophiuchus core, which should be used as gain calibrator for any future radio observations of this region

    The Gould's Belt Distances Survey (GOBELINS) II. Distances and Structure toward the Orion Molecular Clouds

    Get PDF
    We present the results of the Gould's Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ~420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori
    corecore