33 research outputs found
Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of LaSrMnO
The suitability of a particular material for use in magnetic devices is
determined by the process of magnetization reversal/relaxation, which in turn
depends on the magnetic anisotropy. Therefore, designing new ways to control
magnetic anisotropy in technologically important materials is highly desirable.
Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic
ferromagnet LaSrMnO (LSMO) is determined by the proximity
to thermodynamic equilibrium conditions during growth. We performed a series of
X-ray diffraction and ferromagnetic resonance (FMR) experiments in two
different sets of samples: the first corresponds to LSMO thin-films deposited
under tensile strain on (001) SrTiO by Pulsed Laser Deposition (PLD; far
from thermodynamic equilibrium); the second were deposited by a slow Chemical
Solution Deposition (CSD) method, under quasi-equilibrium conditions. Thin
films prepared by PLD show a in-plane cubic anisotropy with an overimposed
uniaxial term. A large anisotropy constant perpendicular to the film plane was
also observed in these films. However, the uniaxial anisotropy is completely
suppressed in the CSD films. The out of plane anisotropy is also reduced,
resulting in a much stronger in plane cubic anisotropy in the chemically
synthesized films. This change is due to a different rotation pattern of
MnO octahedra to accomodate epitaxial strain, which depends not only on
the amount of tensile stress imposed by the STO substrate, but also on the
growth conditions. Our results demonstrate that the nature and magnitude of the
magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during
thin-film deposition.Comment: 6 pages, 8 Figure
Thickness dependence of exchange coupling in epitaxial Fe 3 O 4/ CoFe 2 O 4 soft/hard magnetic bilayers
Epitaxial magnetic heterostructures of (soft-)Fe3O4/(hard-)CoFe2O4(001) have been fabricated with a varying thicknesses of soft ferrite from 5 to 25 nm. We report a change in the regime of magnetic interaction between the layers from rigid-coupling to exchange-spring behavior, above a critical thickness of the soft magnetic Fe3O4 layer. We show that the symmetry and epitaxial matching between the spinel structures of CoFe2O4 and Fe3O4 at the interface stabilize the Verwey transition close to the bulk value even for 5-nm-thick Fe3O4. The large interface exchange-coupling constant estimated from low-temperature M(H) data confirmed the good quality of the ferrite-ferrite interface and the major role played by the interface in the magnetization dynamics. The results presented here constitute a model system for understanding the magnetic behavior of interfaces in core/shell nanoparticles and magnetic oxide-based spintronic devices.Fil: Lavorato, Gabriel Carlos. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; ArgentinaFil: Winkler, Elin Lilian. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; ArgentinaFil: Rivas Murias, B.. Universidad de Santiago de Compostela. Facultad de Química; EspañaFil: Rivadulla, F.. Universidad de Santiago de Compostela. Facultad de Química; Españ
Dielectric signature of charge order in lanthanum nickelates
Three charge-ordering lanthanum nickelates La2-xAxNiO4, substituted with
specific amounts of A = Sr, Ca, and Ba to achieve commensurate charge order,
are investigated using broadband dielectric spectroscopy up to GHz frequencies.
The transition temperatures of the samples are characterized by additional
specific heat and magnetic susceptibility measurements. We find colossal
magnitudes of the dielectric constant for all three compounds and strong
relaxation features, which partly are of Maxwell-Wagner type arising from
electrode polarization. Quite unexpectedly, the temperature-dependent colossal
dielectric constants of these materials exhibit distinct anomalies at the
charge-order transitions.Comment: 7 pages, 6 figure
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
Current trend in synthesis, Post-Synthetic modifications and biological applications of Nanometal-Organic frameworks (NMOFs)
Since the early reports of MOFs and their interesting properties, research involving these materials has grown wide in scope and applications. Various synthetic approaches have ensued in view of obtaining materials with optimised properties, the extensive scope of application spanning from energy, gas sorption, catalysis biological applications has meant exponentially evolved over the years. The far‐reaching synthetic and PSM approaches and porosity control possibilities have continued to serve as a motivation for research on these materials. With respect to the biological applications, MOFs have shown promise as good candidates in applications involving drug delivery, BioMOFs, sensing, imaging amongst others. Despite being a while away from successful entry into the market, observed results in sensing, drug delivery, and imaging put these materials on the spot light as candidates poised to usher in a revolution in biology. In this regard, this review article focuses current approaches in synthesis, post functionalization and biological applications of these materials with particular attention on drug delivery, imaging, sensing and BioMOFs
Enhancement of the power factor of [Bi1.68Ca2O4](RS)[CoO2](1.69) - Ag composites prepared by the spray-drying method
[Bi1.68Ca2O4](RS)[CoO2](1.69) (BCCO) sample and Ag-BCCO composites (with 10, 20 or 30 wt% Ag) have been prepared by the spray-drying technique and uniaxially/isostatically packed. Scanning electron microscopy reveals that the Ag particles are well distributed in the BCCO cobaltite matrix at low Ag contents. The Ag particles have an important effect on densification and grain orientation of the samples, with a direct impact on their electrical conductivity. The electrical conductivity is higher for the uniaxial samples and increases with the Ag content up to 20% in weight, while the Seebeck coefficient is hardly affected. These features induce an improvement of the power factor, reaching a maximum value of 2.2 mu W K-2 cm(-1) at similar to 1050 K for the uniaxial sample with 20 wt% Ag. Our results suggest that the spray-drying technique is a promising method to obtain composites with a well-dispersed secondary phase. (C) 2010 Elsevier Masson SAS. All rights reserved
Caracterización dieléctrica de la perovskita laminar La<sub>1.5</sub>Sr<sub>0.5</sub>CoO<sub>4</sub>
In this work, the behaviour of the real and imaginary components of the dielectric permittivity of layered perovskite La1.5Sr0.5CoO4 have been studied, in the frequency range 20 Hz-1 MHz and in the temperature range 115-350 K. Polycrystalline samples were prepared by the ceramic method. The powder diffraction results showed the pattern of the desired phase together with a small quantities of La2O3 impurities. A comparative study of the electrical and magnetic properties of this charge-ordered compound (TCO∼750 K) has revealed a basically semiconductor behaviour with a complex bidimensional antiferromagnetism which can be explained on the basis of a thermally activated evolution of the spin state of the Co3+ ions. A detailed investigation of the dielectric properties of this system has allowed us to identify two superimposed relaxation processes: the first one in the low frequency range (f En este trabajo se estudia el comportamiento de las componentes real e imaginaria de la permitividad dieléctrica compleja en función de la frecuencia (20 Hz-1 MHz) y la temperatura (115-350 K) de la perovskita laminar La1.5Sr0.5CoO4. Para realizar este estudio preparamos muestras policristalinas utilizando el método cerámico. El análisis por difracción de rayos X mostró la presencia de la fase deseada y una pequeña impureza de La2O3. Un estudio comparativo de las propiedades eléctricas y magnéticas de este compuesto con orden de carga (TCO∼750 K), reveló que básicamente se trata de un material semiconductor con un complejo antiferromagnetismo bidimensional que evoluciona con la temperatura debido a transiciones del estado de espín del Co3+ activadas térmicamente. Una investigación detallada de las propiedades dieléctricas de este sistema nos permitió identificar dos fenómenos de relajación superpuestos: uno presente a bajas frecuencias (f < 102 Hz) que se asocia con los procesos de conducción por “hopping” electrónico en este cristal iónico y otro de tipo dipolar que aparece a más altas frecuencias, que hemos identificado con el orden de carga de este sistema. Ambos fenómenos de relajación , incluida la dispersión de la conductividad frente a la frecuencia, fueron analizados en términos de la “respuesta dieléctrica universal”, encontrando buenos ajustes a esta ley de potencias, con exponentes claramente diferenciados para ambos procesos de relajación
Spray drying: An alternative synthesis method for polycationic oxide compounds
Synthesis of polycationic compounds by the spray-drying technique is an interesting alternative in the domain of aqueous precursor synthesis methods. Spray drying yields high quality samples with good reproducibility. The possibility of scaling up for production of large quantities with fast processing time is well established by the commercial availability of powders of various compositions. In this paper, we have discussed the advantages and limitations of this method and demonstrated its interest by synthesizing a few polycationic compounds selected for their attractive properties of thermoelectricity [Bi1.68Ca2Co1.69O 8, La0.95A0.05CoO3 (A=Ca, Sr, Ba)] or magnetoresistance [La0.70A0.30MnO3 (A=Sr, Ba)]. We have confirmed the quality of these samples by reporting their structure, magnetic and transport properties. © 2010 Elsevier Ltd All rights reserved