17 research outputs found

    Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of pseudomonas sp. Isolated from milk of cows diagnosed with bovine mastitis

    Get PDF
    Indexación; Scopus.Bovine mastitis (BM) is the most prevalent bacterial infection in the livestock sector, affecting the dairy industry greatly. The prevention and treatment of this disease is mainly made via antibiotics, but the increasing antimicrobial resistance of pathogens has affected the efficiency of conventional drugs. Pseudomonas sp. is one of the pathogens involved in this infection. The therapeutic rate of cure for this environmental mastitis-causing pathogen is practically zero, regardless of treatment. Biofilm formation has been one of the main virulence mechanisms of Pseudomonas hence presenting resistance to antibiotic therapy. We have manufactured chitosan nanoparticles (NQo) with tripolyphosphate (TPP) using ionotropic gelation. These NQo were confronted against a Pseudomonas sp. strain isolated from milk samples of cows diagnosed with BM, to evaluate their antimicrobial and antibiofilm capacity. The NQo showed great antibacterial effect in the minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and disk diffusion assays. Using sub lethal concentrations, NQo were tested for inhibition of biofilm formation. The results show that the nanoparticles exhibited biofilm inhibition and were capable of eradicate pre-existing mature biofilm. These findings indicate that the NQo could act as a potential alternative to antibiotic treatment of BM. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/2079-6382/9/9/55

    Comparación de distintas estrategias para la predicción de muerte a corto plazo en el paciente anciano infectado

    Get PDF
    Objective. The aim of this study was to determine the utility of a post hoc lactate added to SIRS and qSOFA score to predict 30-day mortality in older non-severely dependent patients attended for infection in the Emergency Department (ED). Methods. We performed an analytical, observational, prospective cohort study including patients of 75 years of age or older, without severe functional dependence, attended for an infectious disease in 69 Spanish ED for 2-day three seasonal periods. Demographic, clinical and analytical data were collected. The primary outcome was 30-day mortality after the index event. Results. We included 739 patients with a mean age of 84.9 (SD 6.0) years; 375 (50.7%) were women. Ninety-one (12.3%) died within 30 days. The AUC was 0.637 (IC 95% 0.587-0.688; p= 2 and 0.698 (IC 95% 0.635- 0.761; p= 2. Comparing receiver operating characteristic (ROC) there was a better accuracy of qSOFA vs SIRS (p=0.041). Both scales improve the prognosis accuracy with lactate inclusion. The AUC was 0.705 (IC95% 0.652-0.758; p<0.001) for SIRS plus lactate and 0.755 (IC95% 0.696-0.814; p<0.001) for qSOFA plus lactate, showing a trend to statistical significance for the second strategy (p=0.0727). Charlson index not added prognosis accuracy to SIRS (p=0.2269) or qSOFA (p=0.2573). Conclusions. Lactate added to SIRS and qSOFA score improve the accuracy of SIRS and qSOFA to predict short-term mortality in older non-severely dependent patients attended for infection. There is not effect in adding Charlson index

    Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway

    Full text link

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14�294 geography�year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95 uncertainty interval 61·4�61·9) in 1980 to 71·8 years (71·5�72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7�17·4), to 62·6 years (56·5�70·2). Total deaths increased by 4·1 (2·6�5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0 (15·8�18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1 (12·6�16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1 (11·9�14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1, 39·1�44·6), malaria (43·1, 34·7�51·8), neonatal preterm birth complications (29·8, 24·8�34·9), and maternal disorders (29·1, 19·3�37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146�000 deaths, 118�000�183�000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393�000 deaths, 228�000�532�000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost YLLs) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14�294 geography�year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95 uncertainty interval 61·4�61·9) in 1980 to 71·8 years (71·5�72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7�17·4), to 62·6 years (56·5�70·2). Total deaths increased by 4·1 (2·6�5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0 (15·8�18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1 (12·6�16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1 (11·9�14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1, 39·1�44·6), malaria (43·1, 34·7�51·8), neonatal preterm birth complications (29·8, 24·8�34·9), and maternal disorders (29·1, 19·3�37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146�000 deaths, 118�000�183�000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393�000 deaths, 228�000�532�000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost YLLs) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Multiple thermal fronts near the Patagonian shelf break

    No full text
    Eighteen year (1985-2002) sea surface temperature (SST) data are used to study the intraseasonal variability of the Patagonian shelf break front (SBF) in the SW South Atlantic Ocean between 39° and 44°S. The cross-shelf break SST gradients reveal distinct, previously undocumented thermal fronts located both, offshore and inshore of the SBF. Throughout the year the main SBF, identified as a band of negative SST gradient maxima (relatively strong offshore temperature decrease), forms a persistent feature located closed to the 200 m isobath, while two distinct negative gradient maxima are located inshore and offshore of this location. Daily SST images reveal the presence of three branches of cold waters whose edges delineate the above mentioned fronts. The two offshore branches closely follow lines of constant potential vorticity (f/h) and appear to be associated with the Malvinas Current, while a third branch, located further onshore, is not steered by the bottom topography. South of 40°S the onshore branch forms a quasi permanent front parallel to the SBF. Copyright 2008 by the American Geophysical Union.Fil:Rivas, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pisoni, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore