27 research outputs found

    Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record

    Get PDF
    The sedimentation pattern of organic material in the Greenland-Norwegian Sea is reflected in the surface sediments, although less than 0.5% of the organic matter is buried in the sediment. Maximum fluxes and benthic responses are observed during June and/or August/September, following the pattern of export production in the pelagial zone. The annual remineralization rate on the Vþring Plateau is 3.0 g C m−2 a −1 Freshly settled phytodetritus, as detected by chlorophyll measurements, is rapidly mixed into the sediment and decomposed. It stimulates the activity of benthic organisms, especially foraminifera. The mixing coefficient for this material is D b=0.2 cm2 d−1, which is two to three orders of magnitude higher than that estimated from radiotracer methods. The effect on the geological record, however, is likely to be small. Chlorophyll-containing particles are at first very evenly distributed on the seafloor. After partial decomposition and resuspension, a secondary redistribution of particles occurs which can result in the formation of a high accumulation area, with an up to 80-fold increase in the sedimentation rate by lateral advection. This is mainly due to physical processes, because biodeposition mediated by benthic animals increases sedimentation by only a factor of two or three

    Solenosmilia variabilis-bearing cold-water coral mounds off Brazil

    Get PDF
    Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of < 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short-term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water-mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation

    Labor- und Felduntersuchungen zur heterotrophen Aktivitaet in der Bodennepheloidschicht

    No full text
    The influence of an artifical resuspension of surface sediments and subsequent continuous turbulence on a natural bacteria culture has been subjected to a laboratory study, and a theoretical treatment is given on the exchange processes between bacteria and their environment. The second part of this report is devoted to regional and vertical aspects of particle properties and to the significance of heterotrophic activity for the transformation of solved organic substances in the Northeast Water Polonya. In the frame of an extended aggregation-disaggregation model a mechanism for the formation of additional carbon during lateral transport processes by resuspension and microbial modification of organic material from the sediment-boundary layer is described. Stimulated heterotrophic activity provides an additional source of biodisposable material for the benthic culture below the euphotic layer. (WEN)SIGLEAvailable from TIB Hannover: RO 4719(47) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Dating cave drip water by tritium

    No full text
    Speleothems are increasingly used as an archive of past climate, but some of the proxy signals encoded in these deposits reflect hydrological characteristics of the karst aquifer (and not necessarily climate variability). A central aspect in karst hydrology is the time required for the rainwater to reach the point of discharge in a cave, e.g. the tip of the stalactite. One promising approach in determining this residence time is drip-water dating by tritium (3H). In contrast to traditional tritium dating, we do not refer directly to tritium concentrations in precipitation as input function, but to an infiltration-weighted annual mean of the rainwater values. Using concentration differences between this infiltration-weighted mean and the drip water, an age is calculated from the radioactive decay law, assuming piston flow. The approach was tested in three adjacent caves in northwestern Germany which were monitored for about two years. All of the studied drip sites yielded drip water ages between 2 and 4 years with uncertainties on the order of 1 year. These results were confirmed at several drip sites by oxygen isotope data which show rather constant values with insignificant intra-annual variability. Attempts to apply the 3H–3He method resulted in comparable ages, despite several complicating factors
    corecore