6,632 research outputs found

    Deformations of symplectic cohomology and exact Lagrangians in ALE spaces

    Full text link
    We prove that the only exact Lagrangian submanifolds in an ALE space are spheres. ALE spaces are the simply connected hyperkahler manifolds which at infinity look like C^2/G for any finite subgroup G of SL(2,C). They can be realized as the plumbing of copies of the cotangent bundle of a 2-sphere according to ADE Dynkin diagrams. The proof relies on symplectic cohomology.Comment: 35 pages, 3 figures, minor changes and corrected typo

    Principal manifolds and graphs in practice: from molecular biology to dynamical systems

    Full text link
    We present several applications of non-linear data modeling, using principal manifolds and principal graphs constructed using the metaphor of elasticity (elastic principal graph approach). These approaches are generalizations of the Kohonen's self-organizing maps, a class of artificial neural networks. On several examples we show advantages of using non-linear objects for data approximation in comparison to the linear ones. We propose four numerical criteria for comparing linear and non-linear mappings of datasets into the spaces of lower dimension. The examples are taken from comparative political science, from analysis of high-throughput data in molecular biology, from analysis of dynamical systems.Comment: 12 pages, 9 figure

    A controlled experiment for the empirical evaluation of safety analysis techniques for safety-critical software

    Get PDF
    Context: Today's safety critical systems are increasingly reliant on software. Software becomes responsible for most of the critical functions of systems. Many different safety analysis techniques have been developed to identify hazards of systems. FTA and FMEA are most commonly used by safety analysts. Recently, STPA has been proposed with the goal to better cope with complex systems including software. Objective: This research aimed at comparing quantitatively these three safety analysis techniques with regard to their effectiveness, applicability, understandability, ease of use and efficiency in identifying software safety requirements at the system level. Method: We conducted a controlled experiment with 21 master and bachelor students applying these three techniques to three safety-critical systems: train door control, anti-lock braking and traffic collision and avoidance. Results: The results showed that there is no statistically significant difference between these techniques in terms of applicability, understandability and ease of use, but a significant difference in terms of effectiveness and efficiency is obtained. Conclusion: We conclude that STPA seems to be an effective method to identify software safety requirements at the system level. In particular, STPA addresses more different software safety requirements than the traditional techniques FTA and FMEA, but STPA needs more time to carry out by safety analysts with little or no prior experience.Comment: 10 pages, 1 figure in Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering (EASE '15). ACM, 201

    Control of meal size by central noradrenergic action.

    Full text link

    Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors

    Get PDF
    Very fine cobalt oxide xerogel powders were prepared using a unique solution chemistry associated with the sol-gel process. The effect of thermal treatment on the surface area, pore volume, crystallinity, particle structure, and corresponding electrochemical properties of the resulting xerogels was investigated and found to have significant effects on all of these properties. The xerogel remained amorphous as Co(OH)2 up to 160°C, and exhibited maxima in both the surface area and pore volume at this temperature. With an increase in the temperature above 200°C, both the surface area and pore volume decreased sharply, because the amorphous Co(OH)2 decomposed to form CoO that was subsequently oxidized to form crystalline Co3O4. In addition, the changes in the surface area, pore volume, crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 291 F/g was obtained for an electrode prepared with the CoOx xerogel calcined at 150°C, which was consistent with the maxima exhibited in both the surface area and pore volume; this capacitance was attributed solely to a surface redox mechanism. The cycle life of this electrode was also very stable for many thousands of cycles

    LMC X-1: A New Spectral Analysis of the O-star in the binary and surrounding nebula

    Get PDF
    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα\alpha imaging from the Wide Field Imager on the Max Planck Gesellschaft / European Southern Observatory 2.2m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods to obtain both radial velocities and fluxes. This provides an updated spatial velocity of 21.0 ± 4.8\simeq 21.0~\pm~4.8 km s1^{-1} for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of 60\sim 60 M_{\odot} for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet inflated nebula. For both wind and jet-powered origins, this would represent one of the first radio detections of such a structure.Comment: 7 Figures, 4 Table

    Spin correlations and Dzyaloshinskii-Moriya interaction in Cs2_2CuCl4_4

    Full text link
    We report on electron spin resonance (ESR) studies of the spin relaxation in Cs2_2CuCl4_4. The main source of the ESR linewidth at temperatures T150T \leq 150 K is attributed to the uniform Dzyaloshinskii-Moriya interaction. The vector components of the Dzyaloshinskii-Moriya interaction are determined from the angular dependence of the ESR spectra using a high-temperature approximation. Both the angular and temperature dependence of the ESR linewidth have been analyzed using a self-consistent quantum-mechanical approach. In addition analytical expressions based on a quasi-classical picture for spin fluctuations are derived, which show good agreement with the quantum-approach for temperatures T2J/kB15T \geq 2J/k_{\rm B} \approx 15 K. A small modulation of the ESR linewidth observed in the acac-plane is attributed to the anisotropic Zeeman interaction, which reflects the two magnetically nonequivalent Cu positions

    The details of decriminalization: Designing a non-criminal response to the possession of drugs for personal use

    Full text link
    Internationally, policymakers are considering alternative, non-criminal responses to the possession of drugs for personal use, or ‘simple possession’. We show that ‘decriminalization’ is not a simple, unified model; rather, there are meaningful differences in policies and options available as part of a non-criminal response. Responses include various decriminalization, diversion, and depenalization approaches. However, what details need to be considered in developing these approaches? In this paper, we eschew these labels and present an overview of key design features of non-criminal responses to simple possession and consider some of the equity considerations of the choices available, including reform architecture (the objectives and legal framework); eligibility criteria (population-, place-, and drug-based criteria); and actions taken (deterrence, therapeutic, and enforcement strategies). This paper does not evaluate individual features or models, but instead offers a practical framework that can be used to deliberate on potential reform decisions

    Graphene on Si(111)7x7

    Full text link
    We demonstrate that it is possible to mechanically exfoliate graphene under ultra high vacuum conditions on the atomically well defined surface of single crystalline silicon. The flakes are several hundred nanometers in lateral size and their optical contrast is very faint in agreement with calculated data. Single layer graphene is investigated by Raman mapping. The G and 2D peaks are shifted and narrowed compared to undoped graphene. With spatially resolved Kelvin probe measurements we show that this is due to p-type doping with hole densities of n_h \simeq 6x10^{12} cm^{-2}. The in vacuo preparation technique presented here should open up new possibilities to influence the properties of graphene by introducing adsorbates in a controlled way.Comment: 8 pages, 7 figure
    corecore