8,244 research outputs found
Investigation of topographical stability of the concave and convex Self-Organizing Map variant
We investigate, by a systematic numerical study, the parameter dependence of
the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf
concave and convex learning with respect to different input distributions,
input and output dimensions
Recommended from our members
A high-wavenumber boundary-element method for an acoustic scattering problem
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree ) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval , which only requires the discretization of , we show theoretically and experimentally that the error in computing the acoustic field on is , where is the number of degrees of freedom and is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems
Cygnus X-2: the Descendant of an Intermediate-Mass X-Ray Binary
The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a
secondary that is much more luminous and hotter than is appropriate for a
low-mass subgiant. We present detailed binary-evolution calculations which
demonstrate that the present evolutionary state of Cyg X-2 can be understood if
the secondary had an initial mass of around 3.5 M_sun and started to transfer
mass near the end of its main-sequence phase (or, somewhat less likely, just
after leaving the main sequence). Most of the mass of the secondary must have
been ejected from the system during an earlier rapid mass-transfer phase. In
the present phase, the secondary has a mass of around 0.5 M_sun with a
non-degenerate helium core. It is burning hydrogen in a shell, and mass
transfer is driven by the advancement of the burning shell. Cyg X-2 therefore
is related to a previously little studied class of intermediate-mass X-ray
binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray
binaries presently classified as low-mass X-ray binaries may be descendants of
IMXBs and discuss some of the implications
Modelling radiation-induced cell cycle delays
Ionizing radiation is known to delay the cell cycle progression. In
particular after particle exposure significant delays have been observed and it
has been shown that the extent of delay affects the expression of damage such
as chromosome aberrations. Thus, to predict how cells respond to ionizing
radiation and to derive reliable estimates of radiation risks, information
about radiation-induced cell cycle perturbations is required. In the present
study we describe and apply a method for retrieval of information about the
time-course of all cell cycle phases from experimental data on the mitotic
index only. We study the progression of mammalian cells through the cell cycle
after exposure. The analysis reveals a prolonged block of damaged cells in the
G2 phase. Furthermore, by performing an error analysis on simulated data
valuable information for the design of experimental studies has been obtained.
The analysis showed that the number of cells analyzed in an experimental sample
should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and
Environmental Biophysic
All Teleportation and Dense Coding Schemes
We establish a one-to-one correspondence between (1) quantum teleportation
schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled
vectors, (4) orthonormal bases of unitary operators with respect to the
Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus
operators can be chosen to be unitary. The teleportation and dense coding
schemes are assumed to be ``tight'' in the sense that all Hilbert spaces
involved have the same finite dimension d, and the classical channel involved
distinguishes d^2 signals. A general construction procedure for orthonormal
bases of unitaries, involving Latin Squares and complex Hadamard Matrices is
also presented.Comment: 21 pages, LaTe
Remote sensing research for agricultural applications
Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems
Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law
The exchange of light pseudoscalars between fermions leads to a
spin-independent potential in order g^4, where g is the Yukawa
pseudoscalar-fermion coupling constant. This potential gives rise to detectable
violations of both the weak equivalence principle (WEP) and the gravitational
inverse-square law (ISL), even if g is quite small. We show that when
previously derived WEP constraints are combined with those arisingfrom ISL
tests, a direct experimental limit on the Yukawa coupling of light
pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6
\times 10^-7), along with a new (and significantly improved) limit on the
coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical
Review Letters
Sexual violence in post-conflict Liberia: survivors and their care.
Using routine data from three clinics offering care to survivors of sexual violence (SV) in Monrovia, Liberia, we describe the characteristics of SV survivors and the pattern of SV and discuss how the current approach could be better adapted to meet survivors' needs. There were 1500 survivors seeking SV care between January 2008 and December 2009. Most survivors were women (98%) and median age was 13 years (Interquartile range: 9-17 years). Sexual aggression occurred during day-to-day activities in 822 (55%) cases and in the survivor's home in 552 (37%) cases. The perpetrator was a known civilian in 1037 (69%) SV events. Only 619 (41%) survivors sought care within 72 h. The current approach could be improved by: effectively addressing the psychosocial needs of child survivors, reaching male survivors, targeting the perpetrators in awareness and advocacy campaigns and reducing delays in seeking care
- …