697 research outputs found
Air Advising in Afghanistan: Building an Organization in Flight
It is well-known that since 9/11, the US military and its coalition partners have worked with the Afghan government and its military forces to battle an insurgency. At the end of 2014, the majority of US and coalition military forces left Afghanistan. What may be less known is that, for the last several years, a small contingent of American and coalition air advisors have been helping the Afghans rebuild their air force from the ground up. These advisors work daily with Afghanistan Air Force (AAF) leaders to help them build and implement effective organizations, capabilities, technologies, programs, and processes
Monte Carlo Simulation of the Short-time Behaviour of the Dynamic XY Model
Dynamic relaxation of the XY model quenched from a high temperature state to
the critical temperature or below is investigated with Monte Carlo methods.
When a non-zero initial magnetization is given, in the short-time regime of the
dynamic evolution the critical initial increase of the magnetization is
observed. The dynamic exponent is directly determined. The results
show that the exponent varies with respect to the temperature.
Furthermore, it is demonstrated that this initial increase of the magnetization
is universal, i.e. independent of the microscopic details of the initial
configurations and the algorithms.Comment: 14 pages with 5 figures in postscrip
Microscopic Non-Universality versus Macroscopic Universality in Algorithms for Critical Dynamics
We study relaxation processes in spin systems near criticality after a quench
from a high-temperature initial state. Special attention is paid to the stage
where universal behavior, with increasing order parameter emerges from an early
non-universal period. We compare various algorithms, lattice types, and
updating schemes and find in each case the same universal behavior at
macroscopic times, despite of surprising differences during the early
non-universal stages.Comment: 9 pages, 3 figures, RevTeX, submitted to Phys. Rev. Let
First lattice evidence for a non-trivial renormalization of the Higgs condensate
General arguments related to ``triviality'' predict that, in the broken phase
of theory, the condensate re-scales by a factor
$Z_{\phi}$ different from the conventional wavefunction-renormalization factor,
$Z_{prop}$. Using a lattice simulation in the Ising limit we measure
$Z_{\phi}=m^2 \chi$ from the physical mass and susceptibility and $Z_{prop}$
from the residue of the shifted-field propagator. We find that the two $Z$'s
differ, with the difference increasing rapidly as the continuum limit is
approached. Since $Z_{\phi}$ affects the relation of to the Fermi
constant it can sizeably affect the present bounds on the Higgs mass.Comment: 10 pages, 3 figures, 1 table, Latex2
Experimental investigations of an 0.0405 scale space shuttle configuration 3 orbiter to determine subsonic stability characteristics (OA21A/OA21B), volume 2
Aerodynamic investigations were conducted in a low speed wind tunnel from June 18 through June 25, 1973 on a 0.0405 scale -139B model Space Shuttle Vehicle orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional subsonic aerodynamic characteristics of the proposed PRR Space Shuttle Orbiter. Emphasis was placed on component buildup effects, elevon, rudder, body flaps, rudder flare effectiveness, and canard and speed brake development. Angles of attack from -4 to 24 and angles of sideslip of -10 to 10 were tested. Static pressures were recorded on the base. The aerodynamic force balance results are presented in plotted and tabular form
Neural BRDF Representation and Importance Sampling
Controlled capture of real-world material appearance yields tabulated sets of highly realistic reflectance data. In practice, however, its high memory footprint requires compressing into a representation that can be used efficiently in rendering while remaining faithful to the original. Previous works in appearance encoding often prioritized one of these requirements at the expense of the other, by either applying high-fidelity array compression strategies not suited for efficient queries during rendering, or by fitting a compact analytic model that lacks expressiveness. We present a compact neural network-based representation of BRDF data that combines high-accuracy reconstruction with efficient practical rendering via built-in interpolation of reflectance. We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling, critical for the accurate reconstruction of specular highlights. Additionally, we propose a novel approach to make our representation amenable to importance sampling: rather than inverting the trained networks, we learn to encode them in a more compact embedding that can be mapped to parameters of an analytic BRDF for which importance sampling is known. We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets, and importance sampling performance for isotropic BRDFs mapped to two different analytic models
X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions
In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical
behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the
experimental data are reanalyzed, taking into account recent theoretical
results on order-parameter profiles in the crossover regime between ordinary
and normal transitions. Excellent agreement between theoretical expectations
and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.
- …