58 research outputs found

    Assembly and structure of Lys<sup>33</sup>-linked polyubiquitin reveals distinct conformations

    Get PDF
    Ubiquitylation regulates a multitude of biological processes and this versatility stems from the ability of ubiquitin (Ub) to form topologically different polymers of eight different linkage types. Whereas some linkages have been studied in detail, other linkage types including Lys(33)-linked polyUb are poorly understood. In the present study, we identify an enzymatic system for the large-scale assembly of Lys(33) chains by combining the HECT (homologous to the E6–AP C-terminus) E3 ligase AREL1 (apoptosis-resistant E3 Ub protein ligase 1) with linkage selective deubiquitinases (DUBs). Moreover, this first characterization of the chain selectivity of AREL1 indicates its preference for assembling Lys(33)- and Lys(11)-linked Ub chains. Intriguingly, the crystal structure of Lys(33)-linked diUb reveals that it adopts a compact conformation very similar to that observed for Lys(11)-linked diUb. In contrast, crystallographic analysis of Lys(33)-linked triUb reveals a more extended conformation. These two distinct conformational states of Lys(33)-linked polyUb may be selectively recognized by Ub-binding domains (UBD) and enzymes of the Ub system. Importantly, our work provides a method to assemble Lys(33)-linked polyUb that will allow further characterization of this atypical chain type

    Concurrent chemoradiation in anal cancer patients delivered with bone marrow-sparing imrt: Final results of a prospective phase ii trial

    Get PDF
    We investigated the role of the selective avoidance of haematopoietically active pelvic bone marrow (BM), with a targeted intensity-modulated radiotherapy (IMRT) approach, to reduce acute hematologic toxicity (HT) in anal cancer patients undergoing concurrent chemo-radiation. We designed a one-armed two-stage Simon’s design study to test the hypothesis that BM-sparing IMRT would improve by 20% the rate of G0–G2 (vs. G3–G4) HT, from 42% of RTOG 0529 historical data to 62% (α = 0.05; β = 0.20). A minimum of 21/39 (54%) with G0–G2 toxicity represented the threshold for the fulfilment of the criteria to define this approach as ‘promising’. We employed18 FDG-PET to identify active BM within the pelvis. Acute HT was assessed via weekly blood counts and scored as per the Common Toxicity Criteria for Adverse Effects version 4.0. From December 2017 to October 2020, we enrolled 39 patients. Maximum observed acute HT comprised 20% rate of ≥G3 leukopenia and 11% rate of ≥G3 thrombocytopenia. Overall, 11 out of 39 treated patients (28%) experienced ≥G3 acute HT. Conversely, in 28 patients (72%) G0–G2 HT events were observed, above the threshold set. Hence,18 FDG-PET-guided BM-sparing IMRT was able to reduce acute HT in this clinical setting

    The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system

    Get PDF
    The compound BAY 11-7082 inhibits IκBα [inhibitor of NF-κB (nuclear factor κB)α] phosphorylation in cells and has been used to implicate the canonical IKKs (IκB kinases) and NF-κB in >350 publications. In the present study we report that BAY 11-7082 does not inhibit the IKKs, but suppresses their activation in LPS (lipopolysaccharide)-stimulated RAW macrophages and IL (interleukin)-1-stimulated IL-1R (IL-1 receptor) HEK (human embryonic kidney)-293 cells. BAY 11-7082 exerts these effects by inactivating the E2-conjugating enzymes Ubc (ubiquitin conjugating) 13 and UbcH7 and the E3 ligase LUBAC (linear ubiquitin assembly complex), thereby preventing the formation of Lys(63)-linked and linear polyubiquitin chains. BAY 11-7082 prevents ubiquitin conjugation to Ubc13 and UbcH7 by forming a covalent adduct with their reactive cysteine residues via Michael addition at the C(3) atom of BAY 11-7082, followed by the release of 4-methylbenzene-sulfinic acid. BAY 11-7082 stimulated Lys(48)-linked polyubiquitin chain formation in cells and protected HIF1α (hypoxia-inducible factor 1α) from proteasomal degradation, suggesting that it inhibits the proteasome. The results of the present study indicate that the anti-inflammatory effects of BAY 11-7082, its ability to induce B-cell lymphoma and leukaemic T-cell death and to prevent the recruitment of proteins to sites of DNA damage are exerted via inhibition of components of the ubiquitin system and not by inhibiting NF-κB

    Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Serine<sup>65</sup>

    Get PDF
    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser(65) within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser(65) that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser(65) in ubiquitin lies in a similar motif to Ser(65) in the Ubl domain of Parkin. Remarkably, PlNK1 directly phosphorylates Ser(65) of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser(65) (Delta Ubl-Parkin) is robustly activated by ubiquitin(Phospho-Ser65), but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser(65) (Ubl(phospho-Ser65)) can also activate Delta Ubl-Parkin similarly to ubiquitin(PhosPh-Ser65). Thirdly, we establish that ubiquitin(PhosPh-Ser65), but not non-phosphorylated ubiquitin or Ubl(PhosPh-Ser65) activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser(65) and ubiquitin at Ser(65), since only mutation of both proteins at Ser(65) completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser(65), but also by phosphorylating ubiquitin at Ser(65). We propose that phosphorylation of Parkin at Ser(65) serves to prime the E3 ligase enzyme for activation by ubiquitin(PhosPh-Ser65), suggesting that small molecules that mimic ubiquitin(PhosPh-Ser65) could hold promise as novel therapies for Parkinson's disease
    • …
    corecore