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Abstract: We investigated the role of the selective avoidance of haematopoietically active pelvic
bone marrow (BM), with a targeted intensity-modulated radiotherapy (IMRT) approach, to reduce
acute hematologic toxicity (HT) in anal cancer patients undergoing concurrent chemo-radiation. We
designed a one-armed two-stage Simon’s design study to test the hypothesis that BM-sparing IMRT
would improve by 20% the rate of G0–G2 (vs. G3–G4) HT, from 42% of RTOG 0529 historical data to
62% (α = 0.05; β = 0.20). A minimum of 21/39 (54%) with G0–G2 toxicity represented the threshold
for the fulfilment of the criteria to define this approach as ‘promising’. We employed 18FDG-PET to
identify active BM within the pelvis. Acute HT was assessed via weekly blood counts and scored as
per the Common Toxicity Criteria for Adverse Effects version 4.0. From December 2017 to October
2020, we enrolled 39 patients. Maximum observed acute HT comprised 20% rate of ≥G3 leukopenia
and 11% rate of ≥G3 thrombocytopenia. Overall, 11 out of 39 treated patients (28%) experienced ≥G3
acute HT. Conversely, in 28 patients (72%) G0–G2 HT events were observed, above the threshold set.
Hence, 18FDG-PET-guided BM-sparing IMRT was able to reduce acute HT in this clinical setting.

Keywords: anal cancer; bone marrow-sparing IMRT; hematologic toxicity; radiotherapy

1. Introduction

Combination therapy with concurrent chemo-radiation (RT-CHT) is considered stan-
dard of care for the curative treatment of patients with epidermoid carcinoma of the anus,
with a high chance of tumor control and patient survival, accompanied by anatomical
and functional preservation of the anal sphincter complex [1,2]. Compliance to therapy
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is crucial in this setting to maintain the pre-established treatment intensity, given that un-
scheduled treatment breaks and consequent increased overall treatment may be detrimental
on clinical outcomes [3]. Minimizing the toxicity profile during RT-CHT in anal cancer is
hence of paramount importance, particularly to limit major events. Among all toxicities,
hematologic toxicity (HT) can be critical because it may potentially increase the likelihood
to experience infections, bleeding, or anemia-correlated symptoms, eventually hampering
treatment compliance [4]. When radiation therapy is delivered with conventional tech-
niques, grade 3–4 HT can be as high as 61%, as shown in the 5-fluorouracil/mytomicin
C arm of the RTOG 9811 trial [5]. Intensity-modulated radiotherapy (IMRT), being able
to improve dose distribution, with higher conformity and abrupt dose fall off compared
to standard techniques, may decrease acute HT, as shown in the RTOG 0529 trial, where
the likelihood to experience ≥G2 hematologic events was decreased as compared to his-
torical data [6]. Nevertheless, in the same trial, the observed rate of ≥G3 acute HT was as
high as 58%, probably due to the absence of a specific planning strategy targeted at the
anatomic structures harboring hematopoietic function [4,6]. Even if chemotherapy is the
strongest trigger for HT in this setting, radiotherapy plays an important role, consider-
ing that circulating blood cells and precursors within bone marrow (BM) are exquisitely
radiosensitive [4]. It was shown in previous studies, that the unintended dose received
by the osseous segments within the pelvis, identified either on computed tomography or
with 18fluorodeoxyglucose (FDG)-labeled positron emission tomography (18FDG-PET) to
segment hematopoietically active BM, is associated with the rate of occurrence and sever-
ity of acute HT in anal cancer patients treated with concomitant RT-CHT [7–11]. Taking
advantage of IMRT planning and delivery, active BM comprised within the pelvic region
may be used as an organ at risk to be accounted for in the optimization process in order to
minimize the dose received by it and consequently spare hematopoietic precursors [12].
We, hence, conducted a single-arm mono-institutional prospective phase II trial, to test
the hypothesis that the selective sparing of hematopoietically active BM, as identified
with 18FDG-PET, may decrease the acute HT profile in anal cancer patients undergoing
concurrent RT-CHT. The first phase of the study, previously reported, yielded to promising
clinical results, prompting us to conclude the second part of this prospective phase II,
whose final results we hereby describe [12].

2. Materials and Methods
2.1. Eligibility Criteria

Detailed eligibility criteria have been already reported [12]. Briefly, all patients had
a histological diagnosis of squamous cell anal carcinoma of the anus and were staged
with pelvic magnetic resonance, chest computed tomography and whole body 18FDG-PET,
according to the Seventh Edition of the American Joint Committee on Cancer staging
manual [13]. All cases included were staged as T1-T4, N0-N3 and treated with concurrent
RT-CHT with definitive intent. Written informed consent was obtained for all patients. The
study was conducted in accordance with the Declaration of Helsinki and the protocol was
approved by the Ethics Committee of AOU Citta’ della Salute e della Scienza, Turin, Italy
(project identification code: 0089578). The trial was registered in the internal repository for
clinical trials at AOU Citta’ della Salute e della Scienza, Turin, Italy (Project identification
code: 1190/2016).

2.2. Study Design and Sample Size Determination

A one-armed optimal two-stage Simon’s design was selected, to test the hypothesis
that treatment modality under investigation (BM-sparing IMRT) would increase by 20%
the rate of G0–G2 (vs. G3–G4) acute HT over the historical data observed with the IMRT
approach as employed within the RTOG 0529 trial, where the observed rate of ≥G3 acute
HT was 58% (rate for G0–G2: 42%) and no targeted optimization toward active BM was
used, null hypothesis (H0): no difference in acute HT between treatment modalities. [6,14].
The present study was based on the following assumptions: (a) the historical data of success
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(p0) was represented by the 42% rate of G0–G2 acute skin toxicity (G3–G4:58%) detected in
the RTOG 0529 study; (b) the threshold of successful trial (p1) with the treatment schedule
under investigation (BM-sparing IMRT) was set to 62% of G0–G2 acute HT (G3–G4: 38%);
(c) the α error (one-sided type I error) was set at 5%; (d) the β error at 20% (type II
error; power 80%). At the first stage, among 21 enrolled patients, at least 9 (43%) should
experience G0–G2 acute HT to further proceed with the trial. In the first step of the trial,
we reported a rate of 81% for G0–G2 acute HT (17/21 patients) [12]. At the second stage,
another 18 patients were planned to be accrued for an overall sample size of 39 patients.
A minimum of 21/39 (54%) with G0–G2 toxicity represented the threshold for the final
rejection of H0 and the fulfilment of the criteria for the definition of a ‘promising’ treatment
for BM-sparing IMRT.

2.3. Radiotherapy Protocol

Detailed radiotherapy protocol can be found in Arcadipane et al. [12]. Briefly, the
gross tumor volume (GTV) for both primary and nodes was expanded isotropically (20 and
10 mm, respectively) to generate the clinical target volumes (CTVs) and edited to exclude
bones and muscles. The elective CTV comprised the mesorectum, pelvic nodes and
inguinal groins. Lymphatic areas were contoured as an 8–10 mm isotropic expansion
around regional vessels. To generate the corresponding planning target volumes (PTVs), a
10 mm isotropic margin was added to all CTVs [15–17].

Dose prescription followed the RTOG 0529 indications, adapted on clinical stage at
diagnosis [6]. Patients with cT2N0 disease were administered 50.4 Gy/28 fractions (1.8 Gy
daily) to the primary tumor, while elective nodes were prescribed 42 Gy/28 fractions
(1.5 Gy/daily). Patients presenting with cT3-T4/N0-N3 disease were prescribed 54 Gy/30
fractions (1.8 Gy daily) to the GTV, while gross nodal disease was prescribed 50.4 Gy/30
fractions (1.68 Gy daily) if sized ≤ 3 cm or 54 Gy/30 fractions (1.8 Gy/daily) if > 3 cm.
Elective nodal volume was prescribed 45 Gy/30 fractions (1.5 Gy/daily) [6,18].

2.4. Bone Marrow Segmentation

The outer contour of pelvic bone marrow (PBM) was delineated on the planning
computed tomography employing a bone window. The PBM was outlined entirely and
then divided into three subsites, as first described by Mell et al. to include (a) the iliac BM
(IBM), (b) the lower pelvic BM (LPBM) and (c) the lumbosacral BM (LSBM). To segment
active BM, a rigid co-registration was perfomed between planning computed tomography
and diagnostic 18FDG-PET [19]. Thereafter, 18FDG-PET standardized uptake values (SUVs)
were calculated for PBM volumes, after correcting for body weight. Active bone marrow
(ACTBM) was defined as the volume having higher SUV values than the SUVmean for each
patient, as proposed by Rose et al. [10]. Those areas segmented within PBM were named
ACTPBM and those comprised within the three subregions named ACTLSBM, ACTIBM, and
ACTLPBM, respectively. Inactive BM (INACTBM) was outlined as the difference between
PBM and ACTPBM and then segmented for each of the three subregions. Details on the
segmentation process can be found elsewhere [9,11,12].

2.5. Planning Process and Delivery

All treatment plans were generated using the Monaco treatment planning system ver-
sion 5.11 (Elekta, Stockholm, Sweden) or Raystation version 10A (Raysearch, Laboratories
AB, Stockholm, Sweden), optimization on both PTV and organs at risk with biological cost-
functions. A volumetric modulated arc therapy (VMAT) approach was used to combine a
rotational geometry, beam modulation obtained by continuous modulation of multileaf col-
limator, dose rate variations and gantry rotational speed dynamics [15]. The optimization
strategy addressed priorities to both target volumes and organs at risk (bladder, external
genitalia, large and small bowel, and femural heads), dose fall-off, maximum dose, and cold
spot management. The full set of dose constraints for active pelvic BM targeted both PBM
and LSBM and included ACTPBM V10 < 90%, ACTPBM V20 < 75%, ACTLSBM V40 < 41%,
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ACTLSBM mean dose < 32 Gy [9,11,12,20]. The treatment was finally delivered using the
Elekta Synergy platform.

2.6. Chemotherapy

Patients received concurrent chemotherapy, consisting of 5-fluorouracil (1000 mg/m2/day)
administered as continuous infusion for 96 h (days 1–5 and 29–33), together with mitomycin
C (10 mg/m2) given as bolus (days 1 and 29). A total of two concurrent cycles were planned
for each patient.

2.7. Toxicity Evaluation and Clinical Assessment

Acute toxicity was scored following the Common Toxicity Criteria for Adverse Events
scale v4.0 (CTCAEv4.0), including gastro-intestinal (GI), genitourinary (GU), dermatologic,
hematologic, events and recorded within 90 days from the end of treatment [21]. During
observation, patients were re-assessed with digital rectal examination, anoscopy, pelvic
MRI and 18FDG-PET. Final response evaluation was carried out 26 weeks after the start
of RT-CHT.

2.8. Hematologic Toxicity Evaluation

All patients underwent a weekly complete blood count. HT was graded according to
CTCAEv4.0 grading system. Endpoints evaluated in the present analysis were white blood
cell count (WBC), absolute neutrophil count (ANC), hemoglobin (Hb) and platelet (Plt)
count nadirs after each chemotherapy cycle and the highest-grade toxicity for all blood
cells. HT was defined as each hematologic event with a grade higher than 3.

2.9. Statistical Analysis

Discrete and continuous variables were summarized by frequencies and percentages
and using standard measures of central tendency and dispersion. The time-to-event func-
tions were estimated by the Kaplan–Meier product-limit method. Colostomy-free survival
was (CFS) defined as the time between RT-CHT start and the date of colostomy, death, or
last follow-up. Failure-free survival (FFS) was defined as the time between RT-CHT and the
date of any treatment-failure either local, regional or distant. We explored whether clinical
and/or dosimetric characteristics were different between patients experiencing major acute
HT (G3–G4 events) and those who did not (G0–G2). For continuous variables, the normal
distribution was assessed verifying the values of skewness and kurtosis. Mean (SD) scores
and frequencies were used as descriptive analyses, in case of normal distribution. The
ANOVA test was used to explore differences between continuous variables (age, ACTPBM
V10, ACTPBM V20, ACTLSBM V40, and ACTLSBM mean dose), while χ2-test r Fisher exact
testing were used to test differences between categorical variables (gender, tumor, and
nodal stage). A p-value <0.05 was considered as statistically significant. All the analyses
were carried out with MedCalc® Statistical Software version 19.6.1.

3. Results

A total of 39 patients was finally included in this prospective phase II trial. Detailed
patients’ characteristics can be found in Table 1. Mean age was 64 (range 29–81) and
patients were mainly female (77%), HIV-negative (95%), with an anal canal primary tumor
(90%), T2–T3 stage (74%), N1 nodal disease (51%), and global stage IIIC (33%). No patient
underwent a preventive colostomy. Patients were mainly treated with a dual-arc VMAT
approach (92%), up to a total dose to the primary tumor PTV of 54 Gy (92%) and to 45 Gy
(92%) to the prophylactic volumes delivered with conventional fractionation. A total of
20 node positive patients, also received a simultaneous integrated boost to the macroscopic
nodal disease mostly up to 50.4 Gy (60%). Mean radiotherapy duration time was 45 days.
All but two patients were submitted to two cycles of CHT (95%) with dose reduction during
treatment observed in 8% of patients (average dose reduction: 20% of the planned dose).
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Three patients had a temporary interruption of the radiotherapy course (average duration:
2 days). See Table 2 for details.

3.1. Acute Hematologic Toxicity and Dosimetric Outcomes

Mean value at baseline for WBC was 7.380/cm3 (SD:2.560), which dropped to a
minimum of 3.380/cm3 (SD:1.290) one week after the end of RT-CHT (Week 7), reaching
5.600/cm3 (SD:2.470) at three months after the end of treatment. Absolute neutrophil count
at baseline was 4.730/cm3 (SD:2.110), which dropped to a minimum of 2.510/cm3 (SD:1.210)
at Week 7, reaching 3.740/cm3 (SD:1.760) at three months. Mean value at baseline for Plts
was 264.000/cm3 (SD:58.000), which dropped to a minimum of 178.000/cm3 (SD:67.000) at
Week 7, reaching 251.000/cm3 (SD:65.000) at three months after RT-CHT. For Hb, mean
value at baseline was 13.1 g/dl (SD:1.2), which dropped to a minimum of 11.1 g/dl (SD:1.6)
at Week 7, to reach 12.2 g/dl (SD:1.6) at three months. Figure 1 shows the weekly trend for
the analyzed blood parameters during and after concurrent RT-CHT.

Major non-hematologic toxicities comprised G3 events for skin and genitalia in 18%
and 3% of patients, respectively (Table 3).

Table 1. Patient and tumor characteristics.

Variable N (%)

Age
Mean 64
Range 29–81

Gender
Female 30 (77)
Male 9 (23)

HIV status
Positive 2 (5)

Negative 37(95)
Primary tumor site

Anal canal 35 (90)
Anal margin 1 (2)

Both 3 (8)
T-stage

T1 4 (10)
T2 15 (38)
T3 14 (36)
T4 6 (15)

N-stage
N0 19 (49)
N1 20 (51)

Global stage
I 3 (8)

IIA 12 (31)
IIB 4 (10)

IIIA 6 (15)
IIIB 1 (3)
IIIC 13 (33)

Grading
G1 5 (13)
G2 10 (26)
G3 11 (28)
NA 13 (33)
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Table 2. Treatment characteristics.

Variable N (%)

IMRT approach
Single-arc 3 (8)
Dual-arc 36 (92)

PTV dose-tumor (Gy)
54 Gy/30 fractions 36 (92)

50.4 Gy/28 fractions 3 (8)
PTV dose-positive nodes (Gy) 20 pts

54 Gy/30 fractions 8 (40)
50.4 Gy/30 fractions 12 (60)

PTV dose-negative nodes (Gy)
45 Gy/30 fractions 36 (92)
42 Gy/30 fractions 3 (8)

Chemotherapy
5-FU + MMC 39 (100)

Cycles
1 2 (5)
2 37(95)

Chemotherapy dose reduction
Yes 3 (8)
No 36 (92)

RT duration (days)
Mean 45
Range 37–77
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Table 3. Acute toxicity profile.

Acute Toxicity G0 G1 G2 G3 G4

Skin 0 (0) 9 (23) 23 (59) 7 (18) 0 (0)
Gastrointestinal 7 (18) 13 (33) 19 (49) 0 (0) 0 (0)

Urinary 11 (28) 19 (49) 9 (23) 0 (0) 0 (0)
Genitalia 12 (31) 16 (41) 10 (26) 1 (3) 0 (0)

Anemia 22 (56) 9 (23) 7 (18) 1 (3) 0 (0)
Leukopenia 4 (10) 11 (28) 16 (41) 4 (10) 4 (10)
Neutropenia 14 (36) 7 (18) 8 (21) 6 (15) 4 (10)

Thrombocytopenia 26 (67) 8 (21) 1 (3) 3 (8) 1 (3)
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Maximum detected acute HT comprised eight observed events of leukopenia ≥G3
(20%) and 10 events of neutropenia ≥G3 (25%). Four events of ≥G3 thrombocytopenia
(11%) were detected and only one patient (3%) experienced G3 anemia (Table 3). Overall,
11 out 39 of treated patients (28%) experienced ≥G3 acute HT. That corresponds to 28 pa-
tients (72%) experiencing G0–G2 events with respect to acute HT, with an overall threshold
set by the trial design at 21 patients (54%) at least.

Dosimetric parameters pertinent to both treatment volumes and standard organs at
risk are shown in Table 4. Those relative to active BM are presented in Table 5.

Table 4. Dosimetric parameters for both target and organs at risk.

PTV

mean SD

PTV-tumor

D98 (Gy)-50.4Gy 48.0 1.0
D2 (Gy)-50.4Gy 53.0 2.0
D98 (Gy)-54Gy 51.2 1.8
D2 (Gy)-54Gy 57.1 1.2

V95 (%) 95.5 3.6
V107 (%) 1.6 1.5

PTV-elective volumes

D98 (Gy)-42Gy 48 0
D2 (Gy)-42Gy 54 0
D98 (Gy)-45Gy 50.2 2.44
D2 (Gy)-45Gy 57.55 1.36

V95 (%) 91.45 8.61
V107 (%) 2.66 2.81

OARs

mean SD

Bladder

V30 (%) 40.3 13.2
V40 (%) 19.3 13.1
V50 (%) 4.5 9.3
D2(Gy) 47.3 4.8

Mean dose (Gy) 27.8 4.5

Bowel

V30 (cc) 198.1 94.8
V35 (cc) 145.6 88.1
V40 (cc) 19.2 32.7
V45 (cc) 9.3 36.3
D2(Gy) 44.3 3.0

Mean dose (Gy) 20.4 12.1

External genitalia

V20 (%) 40.8 25.5
V30 (%) 29.5 22.6
V40 (%) 15.3 18.4
D2(Gy) 49.4 11.9

Mean dose (Gy) 23.3 11.1

Femural heads

V30 (%) 10.8 8.3
V40 (%) 2.4 4.5
V45 (%) 0.8 3.4
V50 (%) 0.5 3.2
D2(Gy) 36.6 7.6

Mean dose (Gy) 17.5 8.8
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Table 5. Dosimetric parameters for pelvic active bone marrow and its subsites.

Structure Structure

Parameter Mean SD Parameter Mean SD
ACTPBM Dmean(Gy) 23.6 4.1 ACTIBM Dmean(Gy) 19.9 4.13

V5 94.1 8.1 V5 93.8 7.8
V10 81.8 12.1 V10 77.1 12.7
V15 68.1 15.1 V15 66.4 15.9
V20 55.6 15.1 V20 44.8 16.3
V30 33.9 11.1 V30 20.2 11.8
V40 15.4 6.4 V40 6.4 5.7
V45 4.1 3.4 V45 1.3 2.6
V50 0.5 1.1 V50 0.1 0.4

ACTLSBM Dmean(Gy) 29.7 11.8 ACTLPBM Dmean (Gy) 24.5 5.8
V5 95.22 7.8 V5 96.6 8.8
V10 89.2 11.3 V10 85.9 15.9
V15 81.5 13.9 V15 70.5 21.2
V20 72.8 14.2 V20 57.3 21.1
V30 52.8 12.7 V30 35.0 16.2
V40 27.4 10.2 V40 16.1 9.6
V45 7.1 5.6 V45 5.1 4.9
V50 0.9 2.1 V50 0.7 1.6

No significant differences were found between patients experiencing G3–G4 acute HT
and those who did not in terms of age, gender, tumor, and nodal stage and most of the
dosimetric parameters employed during the optimization process (ACTPBM V10, ACTPBM
V20, and ACTLSBM mean dose). A borderline statistically significant difference (p = 0.055)
was observed in terms of ACTLSBM V40. Specifically mean ACTLSBM V40 was found to be
24.8% (SD: 7.8) for patients not experiencing major acute HT and 30.4% (SD: 9.8) for those
in which G3-G4 acute HT was observed (Figure 2).
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3.2. Oncological Outcomes

Median observation time for the whole cohort was 19.5 months (range 6–36). At the
time of last follow up, all patients were alive with 36/39 (92.3%) being free of disease.
Seven patients (17.9%) experienced treatment failure, with four having local relapse, two
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having regional nodal isolated recurrence, and one experiencing synchronous regional
and systemic failure. The four patients with local relapse underwent salvage surgery
consisting of abdomino-perineal resection according to Miles, while the two experiencing
nodal failure within the inguinal groins were given bilateral inguinal lymphadenectomy.
All six patients were salvaged with surgery and are with no evidence of disease at last
follow up examination. Two-year CFS was 93.0% (95% CI: 74.6–98.2%), while two-year FFS
was 83.7% (95% CI: 61.2–93.7%) (Figures 3 and 4).
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4. Discussion

Concurrent RT-CHT is the standard of care in patients affected with anal cancer, as
demonstrated in the ACT-I and EORTC 22,861 trials [22,23]. Intensified chemotherapy
regimens with continuous intravenous infusion of 5-fluorouracil 1000 mg/m2 on days
1–4 (or 750 mg/m2 on days 1–5) and days 29–33 and mitomycin C 12–15 mg/m2 on day
1 were employed in those trials [22,23]. Of notice, these European landmark trials have
typically administered to patients 1 cycle of concurrent mitomycin C. Conversely, in the
North American trials, namely the RTOG8704-ECOG1289 and RTOG 9811 trials, two cycles
of mitomycin C at a dose of 10 mg/m2 were given [5,24]. The addition of chemother-
apy to radiation in this clinical setting is responsible of improved clinical outcomes, but
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also increased toxicity. As an example, in the ACT-I trial, six deaths were attributed to
chemotherapy and a higher rate of severe skin (50%) and GI (14%) toxicities was observed
in the combination therapy arm [22]. In the setting of anal cancer patients submitted to
combination therapy, acute HT can limit the possibility to deliver a full course of treatment
with definitive intent, hampering the overall treatment intensity, due to the increased
likelihood to develop major side effects including bleeding, infections and/or asthenia [4].
Due to its direct myelosuppressive effect, chemotherapy is considered the most important
trigger for HT [4]. In the EORTC 22,861 trial, one treatment-related death was ascribed to
sepsis [23]. Severe acute HT was observed in 26% of patients allocated to the standard arm
of the ACT-II trial and a 3% rate of neutropenic sepsis was observed1. In the RTOG8704-
ECOG1289, the rate of grade 4 and 5 HT was 20% with four patients (3%) experiencing
treatment-related death [24]. In the standard arm of the RTOG 9811 trial, up to 61% of
patients experienced grade 3–4 acute HT [5]. To limit acute HT, different strategies can be
employed and some of them are targeted to the choice of the chemotherapy regimen. One
option could be to limit the administration of mitomycin to only one cycle at the beginning
of the RT-CHT course. As shown in the retrospective study by White et al., comparing anal
cancer patients undergoing concurrent RT-CHT with either one or two cycles of mitomycin,
patients receiving one cycle only had lower rates of clinically significant acute HT includ-
ing neutropenia, with three treatment-related deaths observed in the cohort of patients
receiving two cycles of mitomycin and due to neutropenic sepsis [25]. Conversely, loco-
regional control and survival outcomes were found to be similar, regardless of the number
of cycles administered [25]. Another approach that can be considered is the concurrent
use of cisplatin instead of mitomycin, which was demonstrated to be well-tolerated and
to yield to similar survival outcomes as mitomicin in the experimental arm of the ACT II
trial [1]. Interestingly, the rate of acute grade 3–4 HT was observed to be 16% for cisplatin
and 26% for mitomicin in the aforementioned study [1].

A different approach is to act on radiotherapy. Bone marrow has been demonstrated
to be a key dose-limiting cell renewal tissue during wide-field irradiation [4]. This con-
cept relies on the observation that BM stem cells showed exquisite radiosensitivity, since
radiotherapy has a strong myelosuppressive effect, inducing both apoptosis and stromal
damage, characterized by peculiar pathologic and radiographic modifications [4]. Hence,
the implementation of selective radiotherapy approaches, taking advantage of modern
technologies, may represent an option to limit the damage to hematopoietic precursors.
Intensity modulated radiotherapy ‘per se’ may be an option, as demonstrated by the results
of the RTOG 0529 trial, where the use of IMRT was able to reduce the rate of ≥G2 acute
HT, compared to the rates observed in the RTOG 9811 study [6]. However, the same trial
showed a rate of ≥G3 acute HT as high as 58%, which calls for a selective avoidance
strategy targeting those structures with a hematopoietic function. The most important
BM site with functional activity in the adult population is the pelvic region and lumbar
vertebrae which comprise around 60% of the active BM. In particular, the osseous seg-
ments within the pelvis may contain up to 40% of the total functional BM [4,11]. Since
the radiotherapy approach employed in anal cancer patients is made of extended-volume
irradiation, the unintended dose received by the pelvic bones may be a contributing factor
in determining HT in this setting. Interestingly, the extent of radiation-induced BM damage
has been reported to be influenced by both total radiation dose and BM volume receiving
irradiation [4].

Hence, we have decided to investigate, within a prospective phase II trial, the selective
avoidance of pelvic active BM employing IMRT to decrease the acute HT profile in anal
cancer patients undergoing concurrent RT-CHT. To identify active BM, we employed
functional imaging and, in particular, 18FDG-PET which provides an individual mapping
of BM distribution accounting for variations depending on gender and age and allows for a
reduction in the BM volumes as compared to delineation approaches based on the use of the
whole bony structures [11]. Active BM was then considered as an organ at risk to be used
during IMRT optimization [12]. Dose constraints directed to active BM addressed both low
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dose to ACTPBM and medium-high doses to ACTLSBM. Low doses to PBM were shown to
be correlated to decreased blood cell nadirs and increased likelihood to experience acute HT
in anal cancer patients [7]. We hence chose ACTPBM V10 and ACTPBMV20 < 90% and <75%,
respectively, as per the INTERTECC-2 trial, which investigated the role of BM-sparing IMRT
in cervical cancer patients [26]. Another target to be selectively spared is LSBM, because a)
the relative proportion of active BM within LSBM is high, b) the location of ACTLSBM is
central and in close proximity to high-dose volumes during radiotherapy [11,27]. Hence,
we choseACTLSBM-V40 < 41% and ACTLSBM mean dose < 32 Gy, as cut-off points, as
previously investigated in our studies [9,11,28]. Targeting both PBM and LSBM during the
optimization process allowed us to minimize the interplay effect between low dose to PBM
and the tolerance threshold of LSBM to RT, as demonstrated by our group [20].

The acute toxicity profile with respect to non-hematologic endpoints was generally
mild, with limited major toxicities (≥G3), mostly observed within the skin (18%) and
genitalia (3%). Interestingly no major GI event was recorded. With respect to the primary
endpoint of the study, namely acute HT, 11 out of 39 patients (19%), treated with BM-
sparing IMRT, experienced ≥ G3 events, with neutropenia (25%), leukopenia (20%) and
thrombocytopenia (11%) as most frequent observations. A total of 28 out of 39 patients
(72%) experienced G0–G2 acute HT, above the threshold set by the trial design at 54%. We
were, hence, able to improve by 30% the rate of minor acute HT compared to the data
obtained in the RTOG 0529 trial, above the threshold of 20% improvement expected while
designing the study [6]. These results allowed us to reject the null hypothesis (no difference
in acute HT between standard and BM-sparing IMRT) and to potentially fulfil the criteria
to define BM-sparing IMRT as a ‘promising’ treatment for anal cancer patients undergoing
concurrent CHT-RT with definitive intent to reduce the acute hematologic toxicity profile.

Given the small sample size, we were not able to perform a univariate/multivariate
analysis. Nevertheless, we compared clinical characteristics and dosimetric parameters
between patients experiencing major acute HT and those who did not. The only parameter
with a borderline statistically significant difference was ACTLSBM V40, which was higher
for patients with ≥G3 acute HT. This trend suggests the possibility to even lower the limit
below the 41% threshold that we set in our study, in order to further spare hematopoietic
precursors located in the lumbar–sacral region.

5. Conclusions

This prospective phase II trial supports the feasibility and effectiveness of BM-sparing
IMRT in reducing acute HT in anal cancer patients submitted to concurrent RT-CHT with
definitive intent. This is obtained with no detrimental effect on tumor control and patient’s
survival, since oncological outcomes were shown to be consistent with the available
literature, considering the case mix of the present cohort comprising more than a half of
locally advanced cases. Further investigations are nevertheless needed to increase the
robustness of this finding and support the clinical dissemination of this approach.
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