583 research outputs found

    Studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics

    Get PDF
    The current status and application are described of the biplane video roentgen densitometry, videometry and video digitization systems. These techniques were developed, and continue to be developed for studies of the effects of gravitational and inertial forces on cardiovascular and respiratory dynamics in intact animals and man. Progress is reported in the field of lung dynamics and three-dimensional reconstruction of the dynamic thoracic contents from roentgen video images. It is anticipated that these data will provide added insight into the role of shape and internal spatial relationships (which is altered particularly by acceleration and position of the body) of these organs as an indication of their functional status

    Application of NASTRAN for stress analysis of left ventricle of the heart

    Get PDF
    Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance

    Properties of D-mesons in nuclear matter within a self-consistent coupled-channel approach

    Full text link
    The spectral density of the DD-meson in the nuclear environment is studied within a self-consistent coupled-channel approach assuming a separable potential for the bare meson-baryon interaction. The DNDN interaction, described through a G-matrix, generates dynamically the Λc\Lambda_c (2593) resonance. This resonance is the charm counterpart of the Λ\Lambda (1405) resonance generated from the s-wave KˉN\bar{K}N interaction in the I=0 channel. The medium modification of the D-meson spectral density due to the Pauli blocking of intermediate states as well as due to the dressing of the D-mesons, nucleons and pions is investigated. We observe that the inclusion of coupled-channel effects and the self-consistent dressing of the DD-meson results in an overall reduction of the in-medium DD-meson changes compared to previous work which neglect those effects.Comment: 23 pages, 10 figures, submitted for publicatio

    Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector

    Full text link
    The spin transfer from vertically polarized beam protons to Lambda or Sigma hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is described with the depolarization coefficient D_NN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient D_NN by count rates of a 4 pi detector. It is shown, that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in Physics Research Section

    The nuclear equation of state probed by K+K^+ production in heavy ion collisions

    Full text link
    The dependence of K+K^+ production on the nuclear equation of state is investigated in heavy ion collisions. An increase of the excitation function of K+K^+ multiplicities obtained in heavy (Au+AuAu+Au) over light (C+CC+C) systems when going far below threshold which has been observed by the KaoS Collaboration strongly favours a soft equation of state. This observation holds despite of the influence of an in-medium kaon potential predicted by effective chiral models which is necessary to reproduce the experimental K+K^+ yields. Phase space effects are discussed with respect to the K+K^+ excitation function.Comment: 14 pages Revtex, 6 figures, Proceedings to the XXXIX Interantional Winter Meeting on Nuclear Physics, Bormio, Italy, 200

    Determination of the eta'-proton scattering length in free space

    Full text link
    Taking advantage of both the high mass resolution of the COSY-11 detector and the high energy resolution of the low-emittance proton-beam of the Cooler Synchrotron COSY we determine the excitation function for the pp --> pp eta' reaction close-to-threshold. Combining these data with previous results we extract the scattering length for the eta'-proton potential in free space to be Re(a_{p eta'}) = 0+-0.43 fm and Im(a_{p eta'}) = 0.37(+0.40)(-0.16) fm.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Intermediate energy Coulomb excitation as a probe of nuclear structure at radioactive beam facilities

    Full text link
    The effects of retardation in the Coulomb excitation of radioactive nuclei in intermediate energy collisions (Elab ~100 MeV/nucleon) are investigated. We show that the excitation cross sections of low-lying states in 11Be, {38,40,42}S and {44,46}Ar projectiles incident on gold and lead targets are modified by as much as 20% due to these effects. The angular distributions of decaying gamma-rays are also appreciably modified.Comment: 21 pages, 3 figures, Phys. Rev. C, in pres

    High precision measurement of the associated strangeness production in proton proton interactions

    Full text link
    A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.

    First Model-Independent Measurement of the Spin Triplet pΛp\Lambda Scattering Length from Final State Interaction in the pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda Reaction

    Full text link
    The pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7GeV/c2.7\,\mathrm{GeV}/c. The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANKA_N^{K}). This observable allows the pΛp\Lambda spin triplet scattering length to be extracted for the first time model independently from the final-state interaction in the reaction. The obtained value is at=(2.551.39+0.72stat.±0.6syst.±0.3theo.)fma_{t} = (-2.55 ^{+0.72}_{-1.39} {}_{\textrm{stat.}} \pm 0.6_{\textrm{syst.}} \pm 0.3_{\textrm{theo.}})\mathrm{fm}. This value is compatible with theoretical predictions and results from model-dependent analyses.Comment: Revised version as accepted for publication in PR

    Coherent photon-photon interactions in very peripheral relativistic heavy ion collisions

    Get PDF
    Heavy ions at high velocities provide very strong electromagnetic fields for a very short time. The main characteristics of ultraperipheral relativistic heavy ion collisions are reviewed, characteristic parameters are identified. The main interest in ultraperipheral heavy ion collisions at relativistic ion colliders like the LHC is the interactions of very high energy (equivalent) photons with the countermoving (equivalent) photons and hadrons (protons/ions). The physics of these interactions is quite different from and complementary to the physics of the strong fields achieved with current and future lasers.Comment: 5 pages, 5 figures, invited talk presented at the ELI Workshop and School on Fundamental Physics with Ultra-high Fields (September 29- October 2, 2008, Frauenwoerth, German
    corecore