10,632 research outputs found
Experimental analysis of multistatic multiband radar signatures of wind turbines
This study presents the analysis of recent experimental data acquired using two radar systems at S-band and X-band to measure simultaneous monostatic and bistatic signatures of operational wind turbines near Shrivenham, UK. Bistatic and multistatic radars are a potential approach to mitigate the adverse effects of wind farm clutter on the performance of radar systems, which is a well-known problem for air traffic control and air defence radar. This analysis compares the simultaneous monostatic and bistatic micro-Doppler signatures of two operational turbines and investigates the key differences at bistatic angles up to 23°. The variations of the signature with different polarisations, namely vertical transmitted and vertical received and horizontal transmitted and horizontal received, are also discussed
Movie of the interplanetary magnetic field
Description of movie representing IMP-1 MAGNETOMETER observations of interplanetary magnetic fiel
Interplanetary magnetic field IMP-1, motion picture of the transverse components
Motion picture report of IMP-1 magnetometer observations of interplanetary magnetic fiel
IN-FLIGHT SHOCK-WAVE PRESSURE MEASUREMENTS ABOVE AND BELOW A BOMBER AIRPLANE AT MACH NUMBERS FROM 1.42 TO 1.69
In-flight shock wave pressure measurements above and below bomber aircraft at mach 1.42 to 1.6
Coulomb-Blockade directional coupler
A tunable directional coupler based on Coulomb Blockade effect is presented.
Two electron waveguides are coupled by a quantum dot to an injector waveguide.
Electron confinement is obtained by surface Schottky gates on single
GaAs/AlGaAs heterojunction. Magneto-electrical measurements down to 350 mK are
presented and large transconductance oscillations are reported on both outputs
up to 4.2 K. Experimental results are interpreted in terms of Coulomb Blockade
effect and the relevance of the present design strategy for the implementation
of an electronic multiplexer is underlined.Comment: 4 pages, 4 figures, to be published in Applied Physics Letter
Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics
This paper investigates the sensitivity of sea breeze (SB) simulations to combinations of boundary-layer turbulence and land-surface process parameterizations implemented in the MM5 mesoscale meteorological mode for an observed SB case over the Swedish west coast. Various combinations from four different planetary boundary layer (PBL) schemes [Blackadar, Gayno-Seaman (GS), Eta, MRF], and two land surface model (LSM) schemes (SLAB, Noah) with different complexity are designed to simulate a typical SB case over the Swedish west coast. The simulations are conducted using two-way interactively nested grids. Simulated 10-m winds are compared against observed near-surface wind data from the GÖTE2001 campaign to examine the diurnal cycle of wind direction and speed for SB timing. The SB (vertical) circulation is also compared in the different experiments. The results show that the different combinations of PBL and LSM parameterization schemes result in different SB timing and vertical circulation characteristics. All experiments predict a delayed SB. The vertical component of the SB circulation varies in the experiments, among which the GS PBL scheme produces the strongest SB circulation. Evident differences between the SLAB and Noah LSMs are also found, especially in maximum of updraft and downdraft velocities of the SB vertical circulation. The results have significant implications for convective initiation, air quality studies and other environmental problems in coastal areas
Distinguishing impurity concentrations in GaAs and AlGaAs, using very shallow undoped heterostructures
We demonstrate a method of making a very shallow, gateable, undoped
2-dimensional electron gas. We have developed a method of making very low
resistivity contacts to these structures and systematically studied the
evolution of the mobility as a function of the depth of the 2DEG (from 300nm to
30nm). We demonstrate a way of extracting quantitative information about the
background impurity concentration in GaAs and AlGaAs, the interface roughness
and the charge in the surface states from the data. This information is very
useful from the perspective of molecular beam epitaxy (MBE) growth. It is
difficult to fabricate such shallow high-mobility 2DEGs using modulation doping
due to the need to have a large enough spacer layer to reduce scattering and
switching noise from remote ionsied dopants.Comment: 4 pages, 5 eps figure
- …