65 research outputs found

    Identification of two genes specifying folylpolyglutamate synthases

    Get PDF
    Genes specifying folylpolyglutamate synthase

    The synthesis of polyglutamate forms of folate by N. crassa

    Get PDF
    Synthesis of polyglutamate forms of folat

    Donor genetic determinant of thymopoiesis, rs2204985, and stem cell transplantation outcome in a multipopulation cohort

    Get PDF
    \ua9 2024 The Author(s)Background: A genetic polymorphism, rs2204985, has been reported to be associated with the diversity of T-cell antigen receptor repertoire and TREC levels, reflecting the function of the thymus. As the thymus function can be assumed to be an important factor regulating the outcome of stem cell transplantation (SCT), it was of great interest that rs2204985 showed a genetic association to disease-free and overall survival in a German SCT donor cohort. Tools to predict the outcome of SCT more accurately would help in risk assessment and patient safety. Objective: To evaluate the general validity of the original genetic association found in the German cohort, we determined genetic associations between rs2204985 and the outcome of SCT in 1,473 SCT donors from four different populations. Study design: Genetic associations between rs2204985 genotype AA versus AG/GG and overall survival (OS) and disease-free survival (DFS) in 1,473 adult, allogeneic SCT from Finland, the United Kingdom, Spain, and Poland were performed using the Kaplan-Meier analysis and log-rank tests. We adjusted the survival models with covariates using Cox regression. Results: In unrelated SCT donors (N = 425), the OS of genotype AA versus AG/GG had a trend for a similar association (p = 0.049, log-rank test) as previously reported in the German cohort. The trend did not remain significant in the Cox regression analysis with covariates. No other associations were found. Conclusion: Weak support for the genetic association between rs2204985, previously also associated with thymus function, and the outcome of SCT could be found in a cohort from four populations

    A Rapid, Cost-Effective Method of Assembly and Purification of Synthetic DNA Probes >100 bp

    Get PDF
    Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (<5 min). We then compared full-length product yield of crude and purified samples using HPLC analysis; the results of which clearly show our method yields three-quarters that of the crude sample (50% higher than by gel-extraction). And while we substantially reduced the amount of unligated product with our filtration process, higher purity and yield, with an increase in number of stands per reaction (>12) could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes

    Genomic prediction of relapse in recipients of allogeneic haematopoietic stem cell transplantation

    Get PDF
    Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome, active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC = 0.72 [95% CI: 0.63–0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts (n = 258 and n = 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment, particularly when accompanied by other data modalities.</p

    Computational Analysis of HLA-presentation of Non-synonymous Recipient Mismatches Indicates Effect on the Risk of Chronic Graft-vs.-Host Disease After Allogeneic HSCT

    Get PDF
    Genetic mismatches in protein coding genes between allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipient and donor can elicit an alloimmunity response via peptides presented by the recipient HLA receptors as minor histocompatibility antigens (mHAs). While the impact of individual mHAs on allo-HSCT outcome such as graft-vs.-host and graft-vs.-leukemia effects has been demonstrated, it is likely that established mHAs constitute only a small fraction of all immunogenic non-synonymous variants. In the present study, we have analyzed the genetic mismatching in 157 exome-sequenced sibling allo-HSCT pairs to evaluate the significance of polymorphic HLA class I associated peptides on clinical outcome. We applied computational mismatch estimation approaches based on experimentally verified HLA ligands available in public repositories, published mHAs, and predicted HLA-peptide affinites, and analyzed their associations with chronic graft-vs.-host disease (cGvHD) grades. We found that higher estimated recipient mismatching consistently increased the risk of severe cGvHD, suggesting that HLA-presented mismatching influences the likelihood of long-term complications in the patient. Furthermore, computational approaches focusing on estimation of HLA-presentation instead of all non-synonymous mismatches indiscriminately may be beneficial for analysis sensitivity and could help identify novel mHAs

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    Get PDF
    Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 x10(-8)), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
    corecore