567 research outputs found
On the Shape of the Tail of a Two Dimensional Sand Pile
We study the shape of the tail of a heap of granular material. A simple
theoretical argument shows that the tail adds a logarithmic correction to the
slope given by the angle of repose. This expression is in good agreement with
experiments. We present a cellular automaton that contains gravity, dissipation
and surface roughness and its simulation also gives the predicted shape.Comment: LaTeX file 4 pages, 4 PS figures, also available at
http://pmmh.espci.fr
Mixing and condensation in a wet granular medium
We have studied the effect of small amounts of added liquid on the dynamic
behavior of a granular system consisting of a mixture of glass beads of two
different sizes. Segregation of the large beads to the top of the sample is
found to depend in a nontrivial way on the liquid content. A transition to
viscoplastic behavior occurs at a critical liquid content, which depends upon
the bead size. We show that this transition can be interpreted as a
condensation due to the hysteretic liquid bridge forces connecting the beads,
and provide the corresponding phase diagram.Comment: submitted to PR
Force Dynamics in Weakly Vibrated Granular Packings
The oscillatory force F_b^ac on the bottom of a rigid, vertically vibrated,
grain filled column, reveals rich granular dynamics, even when the peak
acceleration of the vibrations is signicantly less than the gravitational
acceleration at the earth's surface. For loose packings or high frequencies,
F_b^ac 's dynamics are dominated by grain motion. For moderate driving
conditions in more compact samples, grain motion is virtually absent, but
F_b^ac nevertheless exhibits strongly nonlinear and hysteretic behavior,
evidencing a granular regime dominated by nontrivial force-network dynamics.Comment: 4 pages, 5 figure
Piling and avalanches of magnetized particles
We performed computer simulations based on a two-dimensional Distinct Element
Method to study granular systems of magnetized spherical particles. We measured
the angle of repose and the surface roughness of particle piles, and we studied
the effect of magnetization on avalanching. We report linear dependence of both
angle of repose and surface roughness on the ratio of the magnetic dipole
interaction and the gravitational force (\emph{interparticle force ratio}).
There is a difference in avalanche formation at small and at large
interparticle force ratios. The transition is at . For
the particles forming the avalanches leave the system in a quasi-continuous
granular flow (\emph{granular regime}), while for the avalanches are
formed by long particle clusters (\emph{correlated regime}). The transition is
not sharp. We give plausible estimates for based on stability criteria.Comment: 9 pages, 7 figure
Diffusion of a granular pulse in a rotating drum
The diffusion of a pulse of small grains in an horizontal rotating drum is
studied through discrete elements methods simulations. We present a theoretical
analysis of the diffusion process in a one-dimensional confined space in order
to elucidate the effect of the confining end-plate of the drum. We then show
that the diffusion is neither subdiffusive nor superdiffusive but normal. This
is demonstrated by rescaling the concentration profiles obtained at various
stages and by studying the time evolution of the mean squared deviation.
Finally we study the self-diffusion of both large and small grains and we show
that it is normal and that the diffusion coefficient is independent of the
grain size
Avalanche Mixing of Granular Solids
Mixing of two fractions of a granular material in a slowly rotating
two-dimensional drum is considered. The rotation is around the axis of the
upright drum. The drum is filled partially, and mixing occurs only at a free
surface of the material. We propose a simple theory of the mixing process which
describes a real experiment surprisingly well. A geometrical approach without
appealing to ideas of self-organized criticality is used. The dependence of the
mixing time on the drum filling is calculated. The mixing time is infinite in
the case of the half-filled drum. We describe singular behaviour of the mixing
near this critical point.Comment: 9 pages (LaTeX) and 2 Postscript figures, to be published in
Europhys. Let
Diffusive transport of light in two-dimensional granular materials
We study photon diffusion in a two-dimensional random packing of monodisperse
disks as a simple model of granular material. We apply ray optics approximation
to set up a persistent random walk for the photons. We employ Fresnel's
intensity reflectance with its rich dependence on the incidence angle and
polarization state of the light. We present an analytic expression for the
transport-mean-free path in terms of the refractive indices of grains and host
medium, grain radius, and packing fraction. We perform numerical simulations to
examine our analytical result.Comment: 9 pages, 3 figure
- …