34 research outputs found

    Tolerogenic Function of Dimeric Forms of HLA-G Recombinant Proteins: A Comparative Study In Vivo

    Get PDF
    HLA-G is a natural tolerogenic molecule involved in the best example of tolerance to foreign tissues there is: the maternal-fetal tolerance. The further involvement of HLA-G in the tolerance of allogeneic transplants has also been demonstrated and some of its mechanisms of action have been elucidated. For these reasons, therapeutic HLA-G molecules for tolerance induction in transplantation are actively investigated. In the present study, we studied the tolerogenic functions of three different HLA-G recombinant proteins: HLA-G heavy chain fused to β2-microglobulin (B2M), HLA-G heavy chain fused to B2M and to the Fc portion of an immunoglobulin, and HLA-G alpha-1 domain either fused to the Fc part of an immunoglobulin or as a synthetic peptide. Our results demonstrate the tolerogenic function of B2M-HLA-G fusion proteins, and especially of B2M-HLA-G5, which were capable of significantly delaying allogeneic skin graft rejection in a murine in vivo transplantation model. The results from our studies suggest that HLA-G recombinant proteins are relevant candidates for tolerance induction in human transplantation

    The role of HLA-G in human pregnancy

    Get PDF
    Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA. Numerous and highly sophisticated strategies for preventing mothers from rejecting their genetically different fetus(es) have now been identified. These involve production of novel soluble and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G saturate the maternal-fetal interface and circulate in mothers throughout pregnancy. Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when immune cells encounter HLA-G. Unequivocally demonstration of this concept requires experiments in animal models. Both the monkey and the baboon express molecules that are similar but not identical to HLA-G, and may comprise suitable animal models for establishing a central role for these proteins in pregnancy

    A Major Histocompatibility Class I Locus Contributes to Multiple Sclerosis Susceptibility Independently from HLA-DRB1*15:01

    Get PDF
    Background: In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS) is associated with alleles of the human leukocyte antigen (HLA) Class II gene DRB1. Whether other major histocompatibility complex (MHC) genes contribute to MS susceptibility is controversial. Methodology/Principal Findings: A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs) spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility allele in the MHC (O.R. = 3.04, p<1×10−78). To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery rate = .05) 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs were associated with MS susceptibility with p-values ≤1×10−8. The most significantly associated SNP was rs4959039, a SNP in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45×10−13) and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP's contribution to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen. Conclusions: A MHC Class I locus contributes to MS susceptibility independently of the HLA-DRB1*15:01 haplotype

    LILRB2 Interaction with HLA Class I Correlates with Control of HIV-1 Infection.

    Get PDF
    Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10-2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10-11-10-9) and African (p = 10-5-10-3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement

    Phenomenological investigation of the sintering process

    No full text
    corecore