13 research outputs found

    8-Oxo-7,8-dihydro-2'-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study.

    Get PDF
    The next-generation sequencing studies of breast cancer have reported that the tumour suppressor P53 (TP53) gene is mutated in more than 40% of the tumours. We studied the levels of oxidative lesions, including 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), along the coding strand of the exon 5 in breast cancer patients as well as in a reactive oxygen species (ROS)-attacked breast cancer cell line using the ligation-mediated polymerase chain reaction technique. We detected a significant ‘in vitro’ generation of 8-oxodG between the codons 163 and 175, corresponding to a TP53 region with high mutation prevalence, after treatment with xanthine plus xanthine oxidase, a ROS-generating system. Then, we evaluated the occurrence of oxidative lesions in the DNA-binding domain of the TP53 in the core needle biopsies of 113 of women undergoing breast investigation for diagnostic purpose. An increment of oxidative damage at the −G− residues into the codons 163 and 175 was found in the cancer cases as compared to the controls. We found significant associations with the pathological stage and the histological grade of tumours. As the major news of this study, this largest analysis of genomic footprinting of oxidative lesions at the TP53 sequence level to date provided a first roadmap describing the signatures of oxidative lesions in human breast cancer. Our results provide evidence that the generation of oxidative lesions at single nucleotide resolution is not an event highly stochastic, but causes a characteristic pattern of DNA lesions at the site of mutations in the TP53, suggesting causal relationship between oxidative DNA adducts and breast cancer

    Directed -in vitro- evolution of Precambrian and extant Rubiscos

    Get PDF
    Rubisco is an ancient, catalytically conserved yet slow enzyme, which plays a central role in the biosphere’s carbon cycle. The design of Rubiscos to increase agricultural productivity has hitherto relied on the use of in vivo selection systems, precluding the exploration of biochemical traits that are not wired to cell survival. We present a directed -in vitro- evolution platform that extracts the enzyme from its biological context to provide a new avenue for Rubisco engineering. Precambrian and extant form II Rubiscos were subjected to an ensemble of directed evolution strategies aimed at improving thermostability. The most recent ancestor of proteobacteria -dating back 2.4 billion years- was uniquely tolerant to mutagenic loading. Adaptive evolution, focused evolution and genetic drift revealed a panel of thermostable mutants, some deviating from the characteristic trade-offs in CO2-fixing speed and specificity. Our findings provide a novel approach for identifying Rubisco variants with improved catalytic evolution potential.This work was supported by the REPSOL Research contracts Rubolution (RC020401120018), Rubolution 2.0 (RC 020401140042), the CSIC project PIE-201780E043 and the Australian Research Council grant CE140100015

    Persistent activation of interlinked type 2 airway epithelial gene networks in sputum-derived cells from aeroallergen-sensitized symptomatic asthmatics

    Get PDF
    © 2018 The Author(s). Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDM S ) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDM S -wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms

    No full text
    Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. Cells throughout anode biofilms of Geobacter sulfurreducens reduced the metabolic stains: 5-cyano-2,3-ditolyl tetrazolium chloride and Redox Green, suggesting metabolic activity throughout the biofilm. To compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, anode biofilms were encased in resin and sectioned into inner (0-20 microm from anode surface) and outer (30-60 microm) fractions. Transcriptional analysis revealed that, at a twofold threshold, 146 genes had significant (P\u3c0.05) differences in transcript abundance between the inner and outer biofilm sections. Only 1 gene, GSU0093, a hypothetical ATP-binding cassette transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting lower metabolic rates. However, differences in transcript abundance were relatively low

    The Kinetics, Specificities and Structural Features of Lipases

    No full text
    corecore