276 research outputs found

    Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section

    Get PDF
    A progressive increasing in turbine dimension has characterized the technological development in offshore wind energy utilization. This aspect reflects on the growing in blade length and weight. For very large turbines, the standard control systems may not be optimal to give the best performance and the best vibratory load damping, keeping the condition of maximum energy production. For this reason, some new solutions have been proposed in research. One of these is the possibility of morphs the blade surface in an active way (increasing the performance in low wind region) or passive (load reduction) way. In this work, we present a numerical study on the active and passive trailing edge morphing, applied to large wind turbines. In particular, the study focuses on the aerodynamic response of a midspan blade section, in terms of fluid structure interaction (FSI) and driven surface deformation. We test the active system in a simple start-up procedure and the passive system in a power production with turbulent wind conditions, that is, two situations in which we expect these systems could improve the performance. All the computations are carried out with a FSI code, which couples a 2D-CFD solver, a moving mesh solver (both implemented in OpenFOAM library) and a FEM solver. We evaluate all the boundary conditions to apply in the section problem by simulating the 5MW NREL wind turbine with the NREL CAE-tools developed for wind turbine simulation

    Exhaust Energy Recovery with Variable Geometry Turbine to Reduce Fuel Consumption for Microcars

    Get PDF
    The objective proposed by EU to reduce by about 4%/year CO2 emission of internal combustion engines for the next years up to 2030, requires to increase the engine efficiency and accordingly improving the technology. In this framework, hybrid powertrains can have the possibility of a deep market penetration since they may recover energy during brake, allow the engine to operate in better efficiency conditions and with less transients, Moreover, they can recover a large amount of energy lost through the exhaust and use it to reduce fuel consumption. This paper concerns the modification of a conventional two in-line cylinders Diesel engine (440 cm3) adding a variable geometry turbine (VGT) coupled with a generator. The turbine is used to recover exhaust gas energy that otherwise would be lost. The generator, connected to the turbo shaft, converts mechanical energy into electrical energy and is used to charge the vehicle battery or the auxiliaries. The aim of this work is reducing fuel consumption by replacing the alternator with a kind of electric turbo-compounding system to drive vehicle auxiliaries. If the selected turbine recovers enough energy to power auxiliaries, the alternator, which usually has low efficiency, can be removed. Along these lines, fuel consumption savings can be achieved. At a later stage, a microcar has been tested on WLTC (Class 1) driving cycle. The results show fuel consumption reduction of 6 to 9%, depending on VGT size. Indeed, four different VGT sizes have been analyzed to choose the optimal configuration that reflects a compromise between energy recovery and fuel consumption reductions

    Unsteady cfd analysis of erosion mechanism in the coolant channels of a rotating gas turbine blade

    Get PDF
    The two-phase flow in a rotating wedge mimicking the final portion of a blade turbine internal cooling channel is here presented and discussed focusing on unsteady motion and erosion mechanisms. The rotation axis is placed to properly reproduce a configuration with a very strong deviation (90°). The flow field was modelled by using the well known k---f unsteady-RANS model based on the elliptic-relaxation concept. The model was modified by some of the authors to take into account the influence of turbulence anisotropy as well as rotation. The model was applied to the well-established and fully validated T-FlowS code. A systematic comparison of rotating and non-rotating case was carried out to show the influence of Coriolis force on flow and erosion mechanisms. The rotational effects strongly changed the flow behaviour within the channel, affecting both the unsteady flow and the particles trajectories. In the rotating case, there is no recirculation on the tip region; besides, position of the small recirculation regions above each pedestals change. These, and other minor effects, affect the particle motion thus resulting in a different erosion pattern

    Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion

    Get PDF
    Wind-turbine blade rain and sand erosion, over long periods of time, can degrade the aerodynamic performance and therefore the power production. Computational analysis of the erosion can help engineers have a better understanding of the maintenance and protection requirements. We present an integrated method for this class of computational analysis. The main components of the method are the streamline-upwind/Petrov–Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) stabilizations, a finite element particle-cloud tracking method, an erosion model based on two time scales, and the solid-extension mesh moving technique (SEMMT). The turbulent-flow nature of the analysis is handled with a Reynolds-averaged Navier–Stokes model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. Because the geometry update due to the erosion has a very long time scale compared to the fluid–particle dynamics, the update takes place in a sequence of “evolution steps” representing the impact of the erosion. A scale-up factor, calculated in different ways depending on the update threshold criterion, relates the erosions and particle counts in the evolution steps to those in the fluid–particle simulation. As the blade geometry evolves, the mesh is updated with the SEMMT. We present computational analysis of rain and sand erosion for a wind-turbine blade strip, including a case with actual rainfall data and experimental aerodynamic data for eroded airfoil geometries

    Development of improved blade tip endplate concepts for low-noise operation in industrial fans

    Get PDF
    The application of improved blade tip geometries is studied with the aim of identifying an effective design concept for industrial fan passive noise control. The concept developed optimizes a datum blade by means of profiled endplates at the tip, reducing fan noise by changing the tip leakage flow behaviour. Experimental and computational investigations have been carried out on a family of axial fans, in fully ducted configuration, to establish the aerodynamic merits of the proposed blade tip design concept. The flow mechanisms in the fan tip region are correlated to specific blade design features that promote a reduction of the fan aero-acoustic signature in both tonal and broadband noise components. The tip vortical flow structures are characterized, and their role in creation of overall stage acoustic emissions clarified. The reported research identifies modification of tip geometry as markedly affecting the multiple vortex behaviour of blade tip leakage flow by altering the near-wall fluid flow paths on both blade surfaces. Blade tip endplates were also demonstrated to influence the rotor loss behaviour in the blade tip region. Improvement of rotor efficiency was correlated to the control of tip leakage flows

    A CFD-based virtual test-rig for rotating heat exchangers

    Get PDF
    Rotating heat exchangers are used in steel industry, air conditioning and thermal power plants to pre-heat air used in steam generators or for waste heat recovery. Here we focus on a rotating heat exchanger on a so-called Ljungström arrangement operated in thermal power plants to pre-heat the air fed to the steam generators. In these devices the heat exchange between two fluids is achieved through a rotating matrix that gets in contact alternatively with the two fluid streams and acts as a thermal accumulator. To increase the heat capacity and the overall exchange surface, the rotating matrix is filled by a series of folded metal sheets. In the paper we de-scribe a methodology to account for the effects of the Ljungström in a virtual test-rig implemented in a Computational Fluid Dynamics environment. To this aim, a numerical model based on the work of Molinari and Cantiano was derived and implemented in the OpenFOAM library. RANS numerical results were compared with those of a mono-dimensional tool used by ENEL to design Ljungström heat exchangers and validated against available measurements in a real configuration of a thermal power plant

    Performance analysis of a common-rail Diesel engine fuelled with different blends of waste cooking oil and gasoil

    Get PDF
    An experimental campaign was performed to study the behavior of a common-rail Diesel engine in automotive configuration when it is fuelled with blends of Diesel fuel (DF) and waste cooking oil (WCO). In particular the tested fuels are: B20 blend, composed of 20% WCO and 80% DF; B50, composed of 50% WCO and 50% DF; WCO 100% and 100% DF. In order to fuel the engine with fuel having a similar viscosity, this quantity, together with density, has been meas-ured at temperature ranging from rom to about 80 °C. According to these measurements, before fuelling the engine B20 was heated up to 35 °C and B50 to 75 °C. An in-house software was developed to acquire the data elaborated by the electronic control unit. Results show the trend in torque and global efficiency at different gas pedal position (gpp) and different engine speed. The experiments show that larger discrepancies are measured at smaller gpp values, while at larger ones dif-ferences become smaller. A similar trend is noticed for engine global efficiency

    Assessment of innovative reforming procedures for biogas obtained from organic fraction of solid municipal waste

    Get PDF
    In the present paper reforming technologies for the treatment of biogas from municipal solid wastes are discussed. An approach based on the well-known ASPEN Plus software was adopted for the simulation of the whole process, assuming equilibrium conditions for the reactions development. The well-established steam-reforming, the dry reforming and an innovative two-steps reforming (including the basics of both models) were considered. A preliminary assessment was carried out comparing the predictions and experimental results of the steam-reforming procedure of diesel fuel. Then, the validated model was applied to the different schemes. The dry reforming (at 800 °C) showed better reforming efficiency if compared to steam reforming (at 600°C). However, carbon deposition occurs when dry reforming is in play. On the other hand, the two-steps technique demonstrated to be able to solve the problem of carbon deposition guaranteeing a very good efficiency

    NON-FREE VORTEX FLOW EFFECTS IN AN AXIAL FLOW ROTOR

    Get PDF
    This paper presents the analysis of three-dimensional flow field developing through an industrial axial flow fan rotor of non-free vortex design carried out on the basis of concerted experimental and numerical investigations. The paper focuses on non-free vortex flow effects requiring consideration in rotor blade design theories. The distortion of stream surfaces through the blading has been observed and a quantitative analysis of its effects on the blade loading condition has been carried out in the through-flow core region. The streamlines close to the blades have been modelled fitting to outward and inward conical stream tubes on the blade suction and pressure sides, respectively - termed `cone couple model´. It has been pointed out that the blade lift can be satisfactorily described at midspan on the basis of the cone couple model, with use of pitch-averaged flow data. The loading aspects of the tested axial rotor have been discussed on the basis of both the pressure distribution in the vicinity of the blades and pitch-averaged flow data obtained upstream and downstream of the rotor. Sample calculations suggested that separate optimisation of the blade suction and pressure sides is essential if the three-dimensional blade-to-blade flow is intended to be considered in NFV fan design with use of two-dimensional cascade data
    corecore