Development of improved blade tip endplate concepts for low-noise operation in industrial fans

Abstract

The application of improved blade tip geometries is studied with the aim of identifying an effective design concept for industrial fan passive noise control. The concept developed optimizes a datum blade by means of profiled endplates at the tip, reducing fan noise by changing the tip leakage flow behaviour. Experimental and computational investigations have been carried out on a family of axial fans, in fully ducted configuration, to establish the aerodynamic merits of the proposed blade tip design concept. The flow mechanisms in the fan tip region are correlated to specific blade design features that promote a reduction of the fan aero-acoustic signature in both tonal and broadband noise components. The tip vortical flow structures are characterized, and their role in creation of overall stage acoustic emissions clarified. The reported research identifies modification of tip geometry as markedly affecting the multiple vortex behaviour of blade tip leakage flow by altering the near-wall fluid flow paths on both blade surfaces. Blade tip endplates were also demonstrated to influence the rotor loss behaviour in the blade tip region. Improvement of rotor efficiency was correlated to the control of tip leakage flows

    Similar works