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Computational analysis of performance deterioration of a wind

turbine blade strip subjected to environmental erosion

Abstract Wind-turbine blade rain and sand erosion, over

long periods of time, can degrade the aerodynamic perfor-

mance and therefore the power production. Computational

analysis of the erosion can help engineers have a better un-

derstanding of the maintenance and protection requirements.

We present an integrated method for this class of computa-

tional analysis. The main components of the method are the

Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-

Stabilizing/Petrov-Galerkin (PSPG) stabilizations, a finite

element particle-cloud tracking method, an erosion model

based on two time scales, and the Solid-Extension Mesh

Moving Technique (SEMMT). The turbulent-flow nature of

the analysis is handled with a Reynolds-Averaged Navier–

Stokes (RANS) model and SUPG/PSPG stabilization, the

particle-cloud trajectories are calculated based on the com-

puted flow field and closure models defined for the turbulent

dispersion of particles, and one-way dependence is assumed

between the flow and particle dynamics. Because the geom-

etry update due to the erosion has a very long time scale

compared to the fluid–particle dynamics, the update takes

place in a sequence of “evolution steps” representing the im-

pact of the erosion. A scale-up factor, calculated in different

ways depending on the update threshold criterion, relates the

erosions and particle counts in the evolution steps to those in

the fluid–particle simulation. As the blade geometry evolves,

the mesh is updated with the SEMMT. We present compu-
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1 Introduction

Wind-turbine blades are quite often subjected to environ-

mental erosion. Heavy rainfall and frequent sandstorms can

wear the blade coating. If the blade does not have suffi-

cient surface protection, it can be seriously damaged by the

erosion. This changes the blade aerodynamics, degrading

the wind-turbine performance [1]. A deeply-eroded leading

edge could result in up to 20% loss in power generation [2].

With the increasing size of wind-turbine blades, compu-

tational analysis is becoming inevitable in reducing the pro-

totyping cost. Being able to predict how the erosion evolves

as time passes could lead to improvement of the wind-

turbine technology. Such a predictive tool can help the de-

signers find new blade protection strategies. It can also help

them plan effective maintenance schedules. Earlier, closely-

related studies [3; 4] focused on the prediction of rain ero-

sion patterns for a full-span wind-turbine blade. In this work

we are focusing on the effect of the erosion on the aerody-

namic performance of the blade, highlighting the correlation

between the erosion patterns and geometry evolution.

It is clear that the aerodynamics, erosion, and the blade

shape, interacting with each other, have much influence on

the wind-turbine performance. It was shown in [5] that dif-

ferent blade geometries, at the same operational point and

for the same power output, lead to different local aerody-

namic fields with very different erosion patterns. Therefore

we expect that even a minor modification on the critical parts

of the blade section can make a noticeable difference in the

flow field. The blade shape is composed of airfoils optimized

to obtain the best performance. If the geometry of the critical

parts of the airfoil changes, the flow field will be influenced

and the aerodynamic performance and power generation of
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the turbine will be diminished. Furthermore, the aerodynam-

ics affects the particle motion and thus, the erosion itself. To

increase the fidelity of the wind-turbine computational anal-

ysis, we have developed an integrated method for predict-

ing the time evolution of the interaction between the fluid–

particle dynamics and blade erosion and geometry change.

The typical approach we see in the literature does not

account for the change in the flow field due to the geome-

try change. In most studies the flow simulation is performed

only on the original geometry, and then the computed flow

field is used to predict the particle transport and the parti-

cle erosion/deposit on the blade surface. This class of ap-

plications are characterized by small particle concentration.

Therefore one-way dependence is assumed between the flow

and particle dynamics, that is, particle (and cloud) motion

is driven by the flow but the flow is not influenced by the

particles. Tabakoff and coworkers [6; 7; 8] were among the

earliest researchers working on numerical prediction of ero-

sion in turbomachinery. The methods and experiments of

Tabakoff and coworkers served as a foundation for other

studies in the field. For example, Ghenaiet [9] simulated the

erosion in radial compressors and ventilating systems, and

Suzuki and Yamamoto [10] in axial compressors.

The main components of the integrated method

we have developed for computational analysis of this

class of problems are the Streamline-Upwind/Petrov-

Galerkin (SUPG) [11] and Pressure-Stabilizing/Petrov-

Galerkin (PSPG) [12] stabilizations, a finite element

particle-cloud tracking (PCT) method with one-way depen-

dence, an erosion model based on two time scales, and the

Solid-Extension Mesh Moving Technique (SEMMT). The

PCT method was first formulated by Baxter and Smith [13],

and then further developed [14; 15] and improved to obtain

statistically-independent results [16]. The trajectory of the

particle-cloud center is calculated with finite element dis-

cretization. Of the elements of that “particle mesh,” we use

the ones inside the cloud, which has a trajectory-dependent

radius. The tracking method accounts for the drift-velocity

gradient in the near-wall regions [14; 17].

The turbulent-flow nature of the analysis is handled with

a Reynolds-Averaged Navier–Stokes (RANS) model and the

SUPG and PSPG stabilizations. These are complemented

with the “DRDJ” stabilization [18; 19; 20; 21; 22]. The

acronym “DRD” stands for the “Diffusion for Reaction-

Dominated” formulation, introduced in [18], and the DRDJ

is the version [19] that takes into account the local “jump”

in the solution. There are various ways of calculating the

stabilization and discontinuity-capturing (DC) parameters to

be used with the SUPG, PSPG and discontinuity-capturing

methods (see, for example, [23; 24; 18; 25; 26; 27; 28; 29;

30; 31; 32; 33; 34; 35; 19; 36; 37; 38; 39; 20; 40; 21; 41;

22; 42; 43; 44; 45; 46; 28; 35; 47; 48; 49; 50; 51; 52]).

Here we use the ones given in [28]. The particle-cloud tra-

jectories are calculated based on the flow field and a clo-

sure model for the turbulent dispersion of particles. The clo-

sure model can be based on the turbulence closure variables

or the scale-separation feature of the variational multiscale

(VMS) method [53].

Several empirical and semi-empirical models are avail-

able for erosion. The model used in [4] for rain erosion was

a modified version of the Keegan model [54]. In this article,

we use models defined in terms of the mass eroded per unit

mass of the particles impacting on the blade surface. For the

rain erosion, we use the model from Springer et al. [55], and

for the sand erosion, the model from Oka et al. [56].

The geometry update due to the erosion has a very long

time scale compared to the fluid–particle dynamics [57; 58].

Therefore a single time-marching simulation with the typi-

cal time-step size of the flow computation not practical. In-

stead, we use a sequence of “evolution steps” to represent

the impact of the erosion. We time-discretize the evolution

of the geometry not in terms of a standard time step, but in

terms of a threshold erosion value that we expect to alter the

blade aerodynamics from its current operation pattern or a

threshold operation period that we expect to be long enough

to alter the blade aerodynamics.

The computation associated with an evolution step gives

us the erosion distribution for a specific particle size, for a

specific number of particles injected to the computational

domain. We have two approaches for scaling-up the erosion

distribution at each evolution step. A. We scale-up the ero-

sion distribution by a factor that raises its maximum value to

the threshold erosion value. We use the same factor to scale-

up the number of particles to the actual number of particles

for that evolution step. B. We scale-up the number of parti-

cles by a factor that raises it to the actual number of particles

for the threshold operation period. We use the same factor to

scale-up the erosion distribution.

As the blade geometry evolves, we update the mesh with

the SEMMT [59; 60; 61; 62; 63]. The core mesh mov-

ing method in the SEMMT is the Jacobian-based stiffening

method [64; 65; 66; 67]. In the core mesh moving method,

the motion of the internal nodes is determined by solving the

equations of linear elasticity. The mesh deformation is dealt

with selectively based on the sizes of the elements. The se-

lective treatment is attained by altering the way we account

for the Jacobian of the transformation from the element do-

main to the physical domain. The objective is to stiffen the

smaller elements, which are typically placed near solid sur-

faces, more than the larger ones. When the method was in-

troduced in [64; 65; 66], it consisted of simply dropping the

Jacobian from the finite element formulation of the mesh

moving (elasticity) equations. This results in the smaller el-

ements being stiffened more than the larger ones. In the

SEMMT, the thin layers of elements placed near solid sur-

faces are treated almost like an extension of the solid struc-

ture. In solving the equations of elasticity governing the mo-

tion of the fluid nodes, higher stiffness is assigned to the thin

layers of elements compared to the other fluid elements. Two

ways of accomplishing this were proposed in [59]: solving

the elasticity equations for the nodes connected to the thin

layers of elements separately from the elasticity equations

for the other nodes, or together.
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To show how the integrated method works, we perform

computational analysis of rain and sand erosion for a wind-

turbine blade strip, including a case with actual rainfall data

and experimental aerodynamic data for eroded airfoil ge-

ometries.

In Section 2 we provide an overview of the inte-

grated method. Section 3 is an overview of the math-

ematical model, including the RANS and PCT models.

The SUPG/PSPG/DRDJ method for the Navier–Stokes and

RANS closure equations is given in Section 4. In Section 5,

we describe the discretized particle equations, including the

turbulent dispersion of particles. The erosion models and

erosion thickness computation, including how the scale-

up factors are calculated, are described in Section 6. The

SEMMT is described in Section 7. The computations are

presented in Section 8, and the concluding remarks are given

in Section 9.

2 An integrated method

We present an integrated method to simulate the long-term

erosion of a wind-turbine blade. The method is made of

a multiphase flow solver coupled with a geometry update

method.

The time scales associated with the unsteady aerody-

namics and turbulence, particle transport and dynamics, ero-

sion of the target material and the change in the geometry

that produces a significant variation in the average flow field

and particle trajectories are different. The geometry update

due to the erosion has a very long time scale compared to

the fluid–particle dynamics, making a single time-marching

simulation with the typical time-step size of the flow com-

putation not practical. The basic idea is to have a sequence

of evolution steps to represent the impact of the erosion. We

time-discretize the evolution of the geometry not in terms

of a standard time step, but in terms of a threshold erosion

value that we expect to alter the blade aerodynamics from its

current operation pattern or a threshold operation period that

we expect to be long enough to alter the blade aerodynam-

ics. The alteration of the flow patterns leads to the alteration

of the particle dynamics, which in turn alters the erosion pat-

terns.

An evolution step is composed of the sub-steps listed be-

low in the order they are taken.

1. Compute the flow field with the SUPG/PSPG/DRDJ

method [18; 12; 28; 19; 20; 21; 22].

2. Compute the particle-cloud trajectories with the PCT

method described in [4].

3. Compute the erosion distribution over the blade surface.

4. Scale-up the computed erosion distribution using the

threshold erosion value or operation period that triggers

a blade geometry alteration.

5. Update the blade geometry and fluid mechanics mesh to

the next configuration. The mesh update is done with the

SEMMT [59; 60; 61; 62; 63].

The computation associated with an evolution step gives

us the erosion distribution e for a specific particle size, for a

specific number of particles injected to the computational

domain. Depending on the application, we have two ap-

proaches for scaling-up e at each evolution step.

A. We scale-up e by a factor that raises its maximum value

emax to the threshold erosion value ethr. We use the same

factor to scale-up the number of particles to the actual

number of particles for that evolution step. At the end of

all the evolution steps, we obtain a correlation map from

the damaged configurations to the amount of particles

needed to produce those configurations. This map can

later be used to estimate by interpolation the geometrical

configuration resulting from the amount of particles in a

specific application.

B. We scale-up the number of particles by a factor that

raises it to the actual number of particles for the thresh-

old operation period. We use the same factor to scale-up

e. At the end of all the evolution steps, we obtain a cor-

relation map from the actual number of particles to the

damaged configurations. This map can later be used to

directly estimate the damaged configurations from a spe-

cific rate of rainfall or sandstorm during a long, specific

period (e.g., 25 years) that we want to know the damage

for.

3 Mathematical model

3.1 Fluid-phase RANS model for incompressible turbulent

flows

Let W ⇢ Rnsd
be the spatial domain with boundary G , and

(0,T ) be the time domain. The unsteady RANS equations

of incompressible turbulent flows can be written on W and

8t 2 (0,T ) as

r
✓

∂uuu
∂ t

+uuu ·———uuu�FFF

◆
�——— ·sss = 0

0

0,

(1)

——— ·uuu = 0,
(2)

r
✓

∂fff
∂ t

+uuu ·———fff +BBBke fff �FFF ke

◆
�——— · (r(———fff)nnnke) = 0

0

0,

(3)

where r , uuu, and fff = (k, ˜e)T
are the density, velocity, and

turbulence closure variables, and k and

˜e are the turbulent

kinetic energy and homogeneous dissipation. The symbols

FFF and FFF ke represent the vector of external forces and the

source vector of the turbulence closure equations.

As given in [68], FFF represents the volume sources

related to the second- and third-order terms in the non-

isotropic stress–strain relation [69]. It is expressed as

FFF =——— ·
✓
�0.1ntt

✓
eee(uuu) · eee(uuu)� eee(uuu) : eee(uuu)1

3

III
◆
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+0.1ntt
⇣

www(uuu) · eee(uuu)+(www(uuu) · eee(uuu))T
⌘

+0.26ntt
✓

www(uuu) ·www(uuu)�www(uuu) : www(uuu)
1

3

III
◆

�10c2

µ ntt2

⇣
eee(uuu) · eee(uuu) ·www(uuu)

+(eee(uuu) · eee(uuu) ·www(uuu))T
⌘

�5c2

µ ntt2eee(uuu) : eee(uuu)eee(uuu)

+5c2

µ ntt2www(uuu) : www(uuu)eee(uuu)
◆
. (4)

Here III is the identity tensor, eee(uuu) = ———uuu+ (———uuu)T
is twice

the strain-rate tensor, www(uuu) = ———uuu � (———uuu)T
is twice the

vorticity tensor, nt is the turbulent kinematic viscosity

defined as nt = cµ fµ tk, and t = k/˜e is the turbulence time

scale, with cµ and fµ and other closure coefficients for

the turbulence model [69] given in Table 1. In the table,

cµ
0.3(1�exp(�0.36/exp(�0.75max(ê, ˆw))))

1+0.35(max(ê, ˆw))1.5

fµ 1� exp

⇣
�(Ret/90)0.5 � (Ret/400)2

⌘

ce1

1.44

ce2

1.92

fe2

1�0.3exp

�
�Re2

t
�

se 1.3
sk 1.0

Table 1 Turbulence closure coefficients

Ret = k2/(n ˜e) is the turbulence Reynolds number, with n
being the molecular viscosity, and ê and

ˆw are the strain-rate

and vorticity invariants defined as ê = t
p

0.5eee(uuu) : eee(uuu)
and

ˆw = t
p

0.5www(uuu) : www(uuu).

The source vector FFF ke is expressed as

FFF ke =


Pk �D

ce1

Pk
˜e
k +E

�
, (5)

where Pk = RRR : ———uuu is the production of turbulent kinetic

energy, with RRR being the Reynolds stress tensor, D =
2nk———

p
kk2

, and E = 0.0022êktntk——— · (———uuu)k2

.

The stress tensor is expressed as

sss =�
✓

p+
2

3

rk
◆

III +rnueee(uuu), (6)

where p is the pressure, and nu = n +nt .
The diffusion terms in the turbulence closure equations

are represented with the diffusivity matrix defined as

nnnke =

n + nt
sk

0

0 n + nt
se

�
, (7)

with the values of the coefficients sk and se given in Table 1.

The reaction terms, absorption-like in Eq. (3), are repre-

sented with the matrix

BBBke =


Bk 0

0 Be

�
, (8)

with

Bk =
˜e
k
, Be = ce2

fe2

˜e
k
, (9)

and the coefficients ce2

and fe2

are given in Table 1.

The essential and natural boundary conditions corre-

sponding to Eqs. (1) and (3) are

uuu = ggg on Gg and fff = gggke on Ggke , (10)

nnn ···sss = hhh on Gh and nnn · (r(—fff)nnnke = 0

0

0 on Ghke , (11)

where Gg, Ggke , Gh and Ghke are the subsets of the boundary

G , nnn is the unit normal vector, and ggg, gggke and hhh are given

functions.

3.2 Dispersed-phase model

Particle trajectories are simulated in a Lagrangian reference

frame. Since particle concentration in this class of applica-

tions is very small (less than 10

�6

in the particle volume

fraction), a one-way dependence approach can be used [70].

That is, the flow influences the particle motion but the par-

ticles do not influence the flow. The concept of one-way de-

pendence has been used in other computational engineering

analyses. For example, in [71], the concept is used for com-

puting the aerodynamic forces acting on the suspension lines

of spacecraft parachutes, where the suspension lines are as-

sumed to have no influence on the flow. In [46], the same

assumption is used to study the particle–shock interaction.

In [72; 73; 74], the assumption is used in flow-driven string

dynamics in turbomachinery, where the strings are assumed

to have no influence on the flow. We use the PCT model [75]

to simulate a large number of particles without tracking them

individually. The PCT approach was used in turbulent parti-

cle dispersion [13; 16; 76; 77; 78] and validated in turboma-

chinery and biomass furnaces [79; 80]. In the PCT model,

each trajectory is not for a particle, but for a group (“cloud”)

of particles, thus represent the evolution of the cloud posi-

tion as a function of time:

xxxc =
Z t

0

vvvcdt 0+(xxxc)0

. (12)

Here, subscript c refers to the cloud, vvvc is the velocity of the

cloud, and (xxxc)0

is the initial position of the cloud, which is

the inflow boundary in our computations.

The equation of motion for the cloud is given by

the Basset–Boussinesque–Oseen formulation, which, with

one-way dependence hypothesis according to Armenio and

Fiorotto [81], reads as

dvvvc

dt
= t�1

R (huuui� vvvc)+ h fff i+
✓

1� r
rp

◆
a

GRAV

, (13)
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where h i denotes ensemble average (defined later), fff is the

centrifugal and Coriolis forces, rp is the particle material

density, a

GRAV

is the gravitational acceleration, and tR is the

particle relaxation time, which, for spherical particles, is

t�1

R =
3

4dp
CD

r
rp

khuuui� vvvck. (14)

Here, dp is the particle diameter and CD is the drag co-

efficient based on the particle Reynolds number Rep =
khuuui�vvvckdp

n , first introduced in [82]. The Stokes number is de-

fined as

Stk =
tRU

L
, (15)

where U is the free-stream velocity and L is the flow length

scale, which, in this context, is the chord length of the blade

strip. The initial value for vvvc is given as vvvc(0) = huuui|t=0

.

The ensemble average for the dispersed phase within the

cloud is defined according to the hypothesis of independent

statistical events, and for any ensemble-averaged quantity q
it reads as

hqi=
R

Wc
qPDF(xxx, t)dW

R
Wc

PDF(xxx, t)dW
. (16)

Here, Wc is the cloud domain and PDF(xxx, t) is the probabil-

ity density function.

In the PCT approach, the particle position distribution

within a cloud is assumed to be Gaussian, and the cloud size

varies in time, depending on the flow behavior. The PDF of

the particle distribution within the cloud is

PDF(xxx, t) =
1

(2p)1/2s
exp

 
�1

2

✓
kxxx��� xxxccck

s

◆
2

!
. (17)

Here, s is the square root of the variance of particle position,

which accounts for the turbulent dispersion of particles. We

will define it in Section 5. The cloud radius is 3s , and that

gives us Wc. Each cloud is assumed to consist of spherical

particles with the same physical characteristics.

Combining Eqs. (13) and (14), we obtain

dvvvc

dt
=C0

Dkhuuui� vvvck(huuui� vvvc)+ h fff i+
✓

1� r
rp

◆
a

GRAV

,

(18)

where

C0
D =

3

4dp
CD

r
rp

. (19)

4 SUPG/PSPG/DRDJ formulation of the fluid

mechanics equations

For completeness, we include from [3; 4] the

SUPG/PSPG/DRDJ method.

4.1 Stabilized formulations

In describing the SUPG/PSPG/DRDJ formulation of Eqs.

(1), (2) and (3), we assume that we have some suitably-

defined finite-dimensional trial solution and test function

spaces Sh
u, Sh

p, Sh
f and V h

u , V h
p , V h

f . The SUPG/PSPG/DRDJ

formulation is written as follows: find uuuh 2 Sh
u, ph 2 Sh

p and

fff h 2 Sh
f , such that 8wwwh 2V h

u , 8qh 2V h
p and 8yyyh 2V h

f :

Z

W
wwwh ·r

✓
∂uuuh

∂ t
+uuuh ·———uuuh �FFF h

◆
dW

+
Z

W

1

2

eee(wwwh) : ssshdW �
Z

Gh

wwwh ·hhhhdG

+
Z

W
qh——— ·uuuhdW

+
nel

Â
e=1

Z

W e
PPPstab(wwwh,qh) ·

⇣
Ł(uuuh, ph)�rFFF h

⌘
dW = 0,

(20)

where

Ł(wwwh,qh) = r
✓

∂wwwh

∂ t
+uuuhhh ···———wwwhhh

◆
�——— ·sss(wwwh,qh), (21)

and

Z

W
yyyh ·r

 
∂fff h

∂ t
+uuuh ·———fff h +BBBh

ke fff h �FFF h
ke

!
dW

+
Z

W
———yyyh

:

⇣
r(———fff h)nnnh

ke

⌘
dW

+
nel

Â
e=1

Z

W e
PPPstab

ke (yyyh) ·
⇣

Łke(fff h)�rFFF h
ke

⌘
dW

+
nel

Â
e=1

Z

W e
KKKDC

ke r———yyyh
: ———fff hdW = 0, (22)

where

Łke(fff h) = r

 
∂fff h

∂ t
+uuuh ·———fff h +BBBh

ke fff h

!

�——— · (r(———fff h)nnnh
ke). (23)

We calculate ——— ·(———uuuh) in the E term of FFF h
ke by first calculat-

ing the nodal values of ———uuuh
by least-squares projection and

then taking the divergence of the interpolated value of ———uuuh
.

In Eqs. (20)–(23), PPPstab
, PPPstab

ke and KKKDC
ke are the

SUPG/PSPG stabilization operators and the DC matrix of

the DRDJ stabilization. The vectors PPPstab
and PPPstab

ke take the

forms

PPPstab(wwwh,qh) = tSUPG(uuuh ·———)wwwh +
tPSPG

r
———qh, (24)

PPPstab
ke (yyyh) =


tSUPG�k 0

0 tSUPG�e

�
(uuuhhh ·———)yyyh. (25)
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Here tSUPG and tPSPG are the SUPG and PSPG stabilization

parameters. These are defined in Section 4.2.

The DC matrix is defined as

KKKDC
ke =


kDRDJ�k 0

0 kDRDJ�e

�
, (26)

where kDRDJ�k and kDRDJ�e are the DRDJ diffusivities (see

[18; 19; 20; 21; 22]).

4.2 Stabilization parameters

We first define the element length [18] in the advection-

dominated limit:

hUGN = 2

 
nen

Â
a=1

|sss ·———Na|
!�1

, (27)

where sss =

uuu
kuuuk , nen is the number of element nodes, and Na

is the interpolation function associated with node a.

In the diffusion-dominated limit, the element lengths

[28] are defined as

hRGN = 2

 
nen

Â
a=1

|rrr ·———Na|
!�1

, (28)

hRGN�k = 2

 
nen

Â
a=1

|rrrkkk ·———Na|
!�1

, (29)

hRGN�e = 2

 
nen

Â
a=1

|rrreee ·———Na|
!�1

, (30)

where rrr, rrrk and rrre are the unit vectors in the direction of the

solution gradient:

rrr =
———kuuuk
k———kuuukk , rrrk =

———|k|
k———|k|k , rrre =

———|˜e|
k———|˜e|k . (31)

The components of tSUPG corresponding to the advection-

, transient-, and diffusion-dominated limits were defined in

[28; 36] as

tSUGN1

=

 
nen

Â
a=1

|uuu ·———Na|
!�1

=
hUGN

2kuuuk , (32)

tSUGN2

=
D t
2

, (33)

tSUGN3

=
h2

RGN
4n

, (34)

tSUGN3�k =
h2

RGN�k
4nk

, (35)

tSUGN3�e =
h2

RGN�e
4ne

. (36)

From these, the stabilization parameters are defined as

tSUPG =

✓
1

t2

SUGN1

+
1

t2

SUGN2

+
1

t2

SUGN3

◆� 1

2

, (37)

tPSPG = tSUPG, (38)

tSUPG�k =

 
1

t2

SUGN1

+
1

t2

SUGN2

+
1

t2

SUGN3�k

!� 1

2

, (39)

tSUPG�e =

 
1

t2

SUGN1

+
1

t2

SUGN2

+
1

t2

SUGN3�e

!� 1

2

. (40)

5 Discretized particle equations

For completeness, we include from [3; 4] the discretized par-

ticle equations. In these equations, ensemble averaging is

carried out over the discretized cloud domain Wc =
Snelc

e=1

W e
c ,

where W e
c is the cloud element and nelc is the number of el-

ements. The cloud elements come from a fixed mesh, which

we call “particle mesh,” and consist of the elements of the

fixed mesh within a radius of 3s . With that, the discretized

version of ensemble averaging is written as

hqih =
Ânelc

e=1

R
W e

c
qPDF(xxx, t)dW

Ânelc
e=1

R
W e

c
PDF(xxx, t)dW

, (41)

where the element-level integration is performed by Gaus-

sian quadrature.

5.1 Trajectory calculation

Spatially-discretized version of Eq. (18) is written as

dvvvh
ccc

dt
= aaah

c , (42)

where

aaah
c =C0

Dkhuuuih � vvvh
ck
⇣
huuuih � vvvh

c

⌘
+ h fff ih +

✓
1� r

rp

◆
a

GRAV

.

(43)

Time discretization of Eq. (42) is done with a predictor–

multicorrector algorithm.

Predictor stage:

(vvvh
c)

0

n+1

= (vvvh
c)n +(aaah

c)nD t. (44)

Multicorrector stage:

(vvvh
c)

i+1

n+1

= (vvvh
c)n +

⇣
(aaah

c)n +(aaah
c)

i
n+1

⌘ D t
2

. (45)
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Here the subscript n is the time level, and the superscript

i is the counter for the multiple corrections. We stop the cor-

rections when

(vvvh
c)

i+1

n+1

� (vvvh
c)

i
n+1

(vvvh
c)

i+1

n+1

 2⇥10

�2. (46)

At each time step, the PCT model requires the computa-

tion of the cloud mean position and radius, and identification

of the elements contained within the cloud volume. This is

done with the search algorithm described in [17].

5.2 Parameters of the turbulent dispersion of particles

The variance is taken to be dependent upon the Lagrangian

time scale of the particle-laden flow, tL, and, according to

Baxter [75], its Markovian approximation reads as

s2 = 2(v0)2

ct2

L

✓
t

tL
� (1� e�t/tL)

◆
+s2

0

, (47)

where tL is defined as

tL = max(t,tp) = max(t,tR), (48)

with tp given as tp = tR and t defined below. The fluctuating

component of the particle velocity for the cloud, driven by

the turbulent dispersion of particles [83], reads as

(v0)2

c = (u0)2

c

⇣
1� e�t/tp

⌘
. (49)

We consider two sets of definitions (see [45]) for (u0)2

c
and t . The first one is based on the eddy viscosity model

(EVM) through the turbulence closure variables [75]:

(u0)2

c�EV M =
2

3

hkih , (50)

t =

⇣⌦
cµ
↵h
⌘

3/4

hkih

0.817h˜eih . (51)

The second set is based on the VMS approach, first pro-

posed in [53] and further developed for RANS computations

[20; 36; 84]. In this case (u0)2

c is based on the VMS scale sep-

aration uuu = uuuh
+ uuu0, where uuuh

is the resolved flow velocity

and uuu0 is the fine-scale flow velocity modeled as

uuu0 =� 1

r
tSUPG

⇣
Ł(uuuh, ph)�rFFF h

⌘
. (52)

Then the definitions of the parameters for the VMS turbulent

dispersion of particles become

(u0)2

c�V MS =
⌦
kuuu0k2

↵h
, (53)

t = tSUPG. (54)

In the computations reported here, we use the first set.

6 Erosion models and erosion thickness computation

In Section 2 we described two scale-up approaches that drive

the sequence of evolution steps. In the “threshold erosion

value” approach, we specify ethr, and we assume that when

the scaled-up emax reaches ethr, the erosion is at a level to

alter the blade aerodynamics from its current operation pat-

tern. The nominal blade geometry plays a role in determin-

ing ethr. The e computed in a simulation associated with an

evolution step depends on the current blade geometry and

the size and spatial distribution of the particles. We assume

that all these remain in effect during an evolution step, jus-

tifying the scale-up of e to the erosion distribution for that

evolution step. In the “threshold operation period” approach,

we specify an operation period that we expect to be long

enough to alter the blade aerodynamics, and that becomes

the duration associated with each evolution step. We again

assume that the current blade geometry and the size and spa-

tial distribution of the particles remain in effect during an

evolution step. The scale-up factor becomes the ratio of the

number of particles in that duration to the number of par-

ticles used in the simulation. More details on the scale-up

factors will be given in Section 6.5.

6.1 Erosion thickness computation

The erosion thickness e on the surface of the target, calcu-

lated at the element level, is expressed as

e =
me

rt
, (55)

where me is the eroded mass per unit area, computed in the

simulation associated with the evolution step, and rt is the

density of the target material. Following the notation in [4],

we obtain the eroded mass by summing up the mass eroded

in each time step D t:

me = ÂDme, (56)

where, after a threshold particle impact counted is reached,

Dme = EDnpmp. (57)

Here E is the erosion rate, Dnp is the particle impact count

per unit area in D t, and mp is the particle mass. In the finite

element PCT computation, Dnp is calculated as

Dnp =Celemvi,n,elemD t, (58)

where Celem is the particle concentration in the element and

vi,n,elem is the normal component of the particle impact ve-

locity. Both are evaluated at the element center.

We selected two suitable models to determine E, one for

rain erosion [55] and one for sand erosion [56].
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6.2 Rain erosion

We use the model proposed by Springer et al. [55]. It is a

model based on the experiments. It is assumed that the ero-

sion is zero until a threshold impact count (np)thr is reached,

and grows linearly with the impact count after that. An em-

pirical expression is used for (np)thr:

App(np)thr = a
1

✓
Se f f

s
0

◆a
2

, (59)

where App is the projected area of the particle, Se f f is a pa-

rameter which characterizes the strength of the coating ma-

terial, s
0

is the stress produced by the impinging droplet,

and a
1

= 7.1⇥10

�6

and a
2

= 5.7 are model constants, all de-

fined in [55]. In our computations, (np)thr is a time-averaged

quantity, obtained by integration over the particle simula-

tion.

The model is assumed to be valid until an upper-limit

impact count (np) f is reached. The limit has been obtained

from experimental observation, and it is given as

App(np) f = a
3

✓
Se f f

s
0

◆a
2

, (60)

where a
3

= 21.3⇥10

�6

. As pointed out in [55], in most prac-

tical situations the usefulness of the material does not extend

beyond (np) f .

After the impact count raches (np)thr, the eroded mass is

calculated as

Dme = aDnp, (61)

where a represents the mass eroded per impact. It is ob-

tained in [55] for homogeneous materials as

a = a
4

1

(App(np)thr)a
5

mp, (62)

where a
4

= 0.023 and a
5

= 0.7 are empirical constants,

given in [55]. From that we extract E:

E = a
4

1

(App(np)thr)a
5

, (63)

which, by definition, is also a time-averaged quantity, and

that is what we use in Eq. (57).

6.3 Sand erosion

For E used in Eq. (57), we adopt the expression given in

[85]:

E = K(vi,elem)
n, (64)

where K and n are empirical coefficients that depend on the

impact angle (see Figure 1) and coating material. They are

provided in a tabulated form (see Section 8). We note that

this model assumes a double-dependency on the impact an-

gle, in determining the value of K and n, and in calculating

the impact count, through the parameter vi,n,elem.

Fig. 1 Impact angle in the sand erosion model

6.4 Erosion scale-up

The erosion growth in the rain erosion model is shown in

Figure 2. Keeping in mind that np, (np)thr and e vary on the

Fig. 2 Erosion growth in the rain erosion model

blade surface S, we define on S a “banked” impact count B
and an “incubation” function dB, both element-level quan-

tities. Here B is the banked scaled-up impact count at the

beginning of the evolution step i, which will be nonzero for

the elements where the scaled-up impact count did not reach

(np)thr in the previous evolution step and are still incubat-

ing, and dB = 1 will mark those elements. For the elements

where the scaled-up impact count reached (np)thr in the pre-

vious evolution step, B = 0 and dB = 0.

Consider the first evolution step. We initialize B(0) = 0

and d (0)
B = 1 everywhere on S. The scaled-up erosion is cal-

culated as

h(1) =
E(i)mp

rt

⇣
F(1)

ACT n(1)p � (np)
(i)
thr

⌘
, (65)

where F(1)
ACT is the actual scale-up factor for Step 1, obtained

with the scale-up approach selected (see Section 6.5). With

F(1)
ACT , we scale-up e at the end of Step 1 and update B and dB

for all elements:

(
e(1)SU = h(1), d (1)

B = 0, B(1) = 0, if h(1) > 0,

e(1)SU = 0, d (1)
B = 1, B(1) = F(1)

ACT n(1)p , if h(1)  0.
(66)
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For evolution steps with i > 1, Eqs. (65) and (66) are

generalized as

h(i) =
E(i)mp

rt

⇣
B(i�1) +F(i)

ACT n(i)p �d (i�1)
B (np)

(i)
thr

⌘
, (67)

(
e(i)SU = h(i), d (i)

B = 0, B(i) = 0, if h(i) > 0,

e(i)SU = 0, d (i)
B = 1, B(i) = B(i�1) +F(i)

ACT n(i)p , if h(i)  0.
(68)

It is clear that these expressions extend to erosion models

with zero threshold impact count, i.e. models with (np)thr =
0, and become simpler in such cases.

For the sand erosion model the scale-up process is simi-

lar, but we keep in mind that it is a model with zero threshold

impact count, and E is a function of the impact angle and

impact velocity. Consequently, the scale-up becomes

e(i)SU = F(i)
ACT e(i), (69)

where e comes from Eq. (55).

6.5 Scale-up factors

6.5.1 Specified threshold erosion value

For the rain erosion model, for each element on S we solve

the following equation for F(i)
:

ethr =
E(i)mp

rt

⇣
B(i�1) +F(i)n(i)p �d (i�1)

B (np)
(1)
thr

⌘
. (70)

We set F(i)
ACT equal to the minimum of F(i)

over all the ele-

ments on S and use that in Section 6.4.

For the sand erosion model, for each element on S we

use the following expression for F(i)
:

F(i) =
ethr

e(i)
. (71)

We again set F(i)
ACT equal to the minimum of F(i)

over all the

elements on S and use that in Section 6.4. This is equivalent

to setting

F(i)
ACT =

ethr

e(i)max
. (72)

The scale-up factor F(i)
ACT , as described in Section 6.4,

is used in obtaining e(i)SU , the scaled-up erosion distribution.

The same factor is used in obtaining (nTOT )
(i)
SU , the total

number of particles needed to enter the PCT domain at the

evolution step i to produce that erosion distribution:

(nTOT )
(i)
SU = F(i)

ACT nTOT , (73)

where nTOT = 1

APINF
ÂNC

C=1

nC is the total number of particles

per unit area entering the PCT simulation domain. Here NC
is the number of particle clouds entering the PCT simulation

domain, nC is the number of particles per cloud, and APINF is

the simulation inflow area. From (nTOT )
(i)
SU , we can calculate

the operation period associated with the evolution step i.

6.5.2 Specified threshold operation period

In a specific application, given the actual threshold operation

period T (i)
for an evolution step, and the number of particles

per unit area and per unit time, ṅR, we know the total number

of particles entering the PCT domain as n(i)R = ṅRT (i)
. Usu-

ally, ṅR is a known quantity from field data, e.g. the rainfall

in a geographical region during a year or the particle flow

into a gas-turbine duct in a certain operation period. We can

then calculate the scale-up factor as

F(i)
ACT =

n(i)R
nTOT

(74)

and use that in Section 6.4.

We will show a specific application of this approach in

Section 8.3, extracting ṅR from the measured rain data in a

specific region.

7 Mesh update with the SEMMT

As the blade geometry evolves based on the scaled-up ero-

sion distribution, we update the mesh with the SEMMT. The

core mesh moving method in the SEMMT is the Jacobian-

based stiffening method. We include, from [86], a brief de-

scription of these methods.

The Jacobian-based stiffening method was introduced in

[64; 65; 66]. The motion of the internal nodes is determined

by solving the equations of linear elasticity. At the bound-

aries, the normal velocity of the mesh matches the normal

velocity of the fluid. The mesh deformation is dealt with se-

lectively based on the sizes of the elements. Selective treat-

ment based on element sizes is attained by altering the way

we account for the Jacobian of the transformation from the

element domain to the physical domain. The objective is

to stiffen the smaller elements, which are typically placed

near solid surfaces, more than the larger ones. When the

method was introduced in [64; 65; 66], it consisted of sim-

ply dropping the Jacobian from the finite element formula-

tion of the mesh moving (elasticity) equations. This results

in the smaller elements being stiffened more than the larger

ones. The method was named “Jacobian-based stiffening” in

[67]. It was also augmented in [67] to a more extensive kind

by introducing a stiffening power that determines the degree

by which the smaller elements are rendered stiffer than the

larger ones. This approach, when the stiffening power is set

to 1.0, would be identical to the one introduced in [64].

The SEMMT was proposed in 2001 [59]. In the SEMMT

[59; 60; 61; 62; 63], the thin layers of elements placed near
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solid surfaces are treated almost like an extension of the

solid structure. In solving the equations of elasticity govern-

ing the motion of the fluid nodes, higher stiffness is assigned

to the thin layers of elements compared to the other fluid el-

ements. Two ways of accomplishing this were proposed in

[59]: solving the elasticity equations for the nodes connected

to the thin layers of elements separately from the elasticity

equations for the other nodes, or together. If they are solved

separately, for the thin layers of elements, as boundary con-

ditions at the interface with the other elements, traction-free

conditions would be used. The separate-solution option is re-

ferred to as “SEMMT – Multiple Domain (SEMMT-MD),”

and the unified-solution option as “SEMMT – Single Do-

main (SEMMT-SD).” The test computations presented in

[87; 61; 62; 63] show that the SEMMT is very effective

in protecting the thin layers of elements near solid surfaces

from deformation.

8 Computations

8.1 Computational conditions

The computational analysis is for a blade strip that has a DU-

96-W-180 airfoil section with chord length 1.0 m. This air-

foil profile is commonly used for the midspan blade section.

The computations are for 6

�
angle-of-attack (AoA), which

corresponds to a reasonable operation-average value for the

blade section we have. The computational domain, shown in

Figure 3, is for a wind tunnel section. The domain is 30 m

long, 3.2 m high, and extends 0.2 m in the spanwise direc-

tion. The inflow velocity is normal to the inlet plane, with

Re = 1.2⇥10

6

. The turbulence quantities are set to obtain a

turbulence intensity of 5% at the inlet. The boundary condi-

tions are no-slip, k = 0 and e = 0 on the blade surface, slip

and zero-flux on the upper and lower boundaries, zero-stress

and zero-flux at the outflow boundary, and periodicity in the

spanwise direction. The mesh, shown in Figure 4, is struc-

tured and has 3⇥10

5

hexahedral elements, with y+ less than

1.0 everywhere on the blade surface.

Table 2 shows the properties of the fluid and particle

phases. Table 3 shows, for the sand erosion, the empirical

Table 2 Properties of the fluid and particle phases

Air density 1.23 kg/m

3

Air velocity at the inlet 18 m/s

Reynolds number 1.2⇥10

6

Water density 1⇥10

3

kg/m

3

Diameter of the rain drops 1⇥10

�3

m

Stokes number for the rain erosion 55.6

Density of the sand particles (SiO
2

) 2.3⇥10

3

kg/m

3

Diameter of the sand particles 4⇥10

�5

m

Stokes number for the sand erosion 0.361

coefficients of the erosion model from [85].

Table 3 Empirical coefficients of the sand erosion model (for

UHMWPE coating material) [85]

q [

�
] K [(m/s)�n

] n
0 0 2.8000

15 1.366⇥10

�9

2.8065

30 3.337⇥10

�9

2.6056

60 1.490⇥10

�9

2.6500

90 2.350⇥10

�11

2.6500

The time-step size in both rain erosion and sand erosion

cases is 1⇥10

�6

s. In both PCT simulations we use 6 particle

clouds, with 0.2 m diameter and with 50 million particles in

each cloud.

8.2 Results for specified threshold erosion value

In both rain and sand erosion, we specify a threshold erosion

value as the scale-up approach in the evolution steps. We

show how the blade geometry evolves during the erosion.

We set ethr = 2.5⇥10

�5

m, and the number of evolution steps

is 24. With these values, at the end of the evolution, the max-

imum erosion thickness cannot exceed 6 mm. In this section

we do not associate a time period to this blade evolution. If

needed, we can of course calculate the total number of parti-

cles needed to enter the PCT domain at every evolution step,

and given a rainfall or sand data in a specific application, we

can map the blade evolution to elapsed time.

8.2.1 Rain erosion

To simplify the calculations, we assume that beyond the first

evolution step every element on the blade surface have al-

ready reached (np)thr and we set B(i�1) = 0 and d (i�1)
B = 0.

We make this assumption thinking that the elements that

have not actually reached (np)thr are likely to have an ero-

sion rate that will be negligible compared to the elements

with FACT np > (np)thr. Therefore assuming that beyond the

first evolution step they also have reached (np)thr would not

make much difference.

Figure 5 shows the geometry evolution and the initial and

final meshes. We see how the erosion patterns vary at differ-

ent evolution steps because of the variation in the geometry,

aerodynamic field, and the particle transport. As the mesh

deforms in response to the change in the blade geometry,

the quality of the thin layers of elements near the blade sur-

face is retained and this maintains the flow resolution in the

boundary layer. Figure 6 shows the distribution of the impact

count and erosion for the first and last evolution steps. The

erosion pattern is symmetric at the beginning but loses sym-

metry with the variation of the geometry. Figure 7 shows the

pressure and turbulent kinematic viscosity for the first and

last evolution steps.

Figure 8 shows, for the first evolution step, the mass cen-

ter trajectories for the particle clouds at different AoA. Be-
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cause the Stokes number is quite high due to the inertia of

the rain drops (1 mm diameter), the particles are not that af-

fected by the drag. Figure 9 shows, for the first evolution

step, the erosion patterns at different AoA. At the zero-lift

AoA (�2.2�) we see a smooth variation in the erosion dis-

tribution on the suction and pressure sides. At 2

�
there is

more erosion on the suction side, while the desirable erosion

condition (balance between the two sides) is seen at 6

�
. At

higher AoA (10

�
) the max erosion is on the pressure side.

8.2.2 Sand erosion

Because the sand particles are much smaller, the sand flow

will have less kinetic energy and consequently less erosive

power than the rain flow. Figure 10 shows the geometry evo-

lution, initial and final meshes, and the pressure for the first

and last evolution steps. Figure 11 shows the distribution of

the impact count and erosion for the first and last evolution

steps. Figure 12 shows, for the first evolution step, the mass

center trajectories for the particle clouds at different AoA.

The particles are following the flow more than in the rain

erosion; this is due to the lower Stokes number. The devia-

tion is greater at the leading edge. Figure 13 shows, for the

first evolution step, the erosion patterns at different AoA. At

the zero-lift AoA (�2.2�) the erosion is mostly at the leading

edge. At 2

�
the erosions are comparable on the two sides. At

6

�
and 10

�
the erosion peaks and most of the erosion is on

the pressure side.

X

Y

Z

Fig. 5 Rain erosion. Geometry evolution and initial (black) and final

(blue) meshes at the middle section of the blade strip

8.3 Results for specified threshold operation period: rain

erosion field application

Given the rainfall data in this specific application, we specify

a threshold operation period for the evolution steps. From

that we extract the total number of particles entering the PCT

domain in an evolution step and calculate the scale-up factor

as described in Section 6.5.2. We compare the performance

of the eroded airfoil with the experimental data from Sareen

et al. [88].

As reported in [4], rain erosion is a common problem for

the wind farms in Northern Europe. In Norther Scotland, the



12

X

Y

Z

Norm. impact count
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

X

Y

Z

Norm. impact count
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

X

Y

Z

Norm. Erosion1
0.95
0.8
0.65
0.5
0.35
0.2
0.05
3.42551E-07
2.10572E-11

X

Y

Z

Norm. Erosion1
0.95
0.8
0.65
0.5
0.35
0.2
0.05
3.42551E-07
2.10572E-11

Fig. 6 Rain erosion. Normalized impact count (top) and erosion (bottom), at the end of the first (left) and last (right) evolution steps

average annual rainfall, HY
RF , is 2,000 mm, and that can also

be represented as a rainfall rate of VRF = 2,000 mm/yr. We

define the rainwater fraction as

bR =
VRF

VR
, (75)

where VR is the raindrop velocity, given in units consistent

with the units of VRF . The rainfall rate the blade sees is

VBRF = bRVB =
VRF

VR
VB, (76)

where VB is the blade velocity. The annual rainfall for the

blade will then be

HY
BRF =

VB

VR
HY

RF . (77)

In the PCT simulation, assuming the same number of par-

ticles in each cloud, we can calculate the simulation blade

rainfall as

HY
SBRF =

NCnCVd

APINF
, (78)

where Vd is the raindrop volume.

Remark 1 The expressions given by Eqs. (75) and (76) are
based on the assumption that the rainfall is vertical, the
blade velocity is horizontal, and the inflow plane is perpen-
dicular to the blade velocity vector. In Appendix A we pro-
vide expressions for the general case, without these assump-
tions.

In calculating FACT from Eq. (74), we first calculate nR
and nTOT :

nR =
HY

BRF
Vd

, (79)

nTOT =
NCnC

APINF
=

HY
SBRF
Vd

, (80)

and then obtain

FACT =
nR

nTOT
=

HY
BRF

HY
SBRF

. (81)

We could have of course reached the same point by sim-

ply recognizing that the ratio of the actual and simulation
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Fig. 7 Rain erosion. Pressure (top) and turbulent kinematic viscosity

(bottom) at the middle section of the blade strip, for the first (black)

and last (red) evolution steps

rainfalls the blade sees,

HY
BRF

HY
SBRF

, is the scale-up factor we are

looking for.

The threshold operation period for the evolution steps is

1.0 year, and the number of evolution steps is 20, represent-

ing 20 years of service. Using the calculated value of FACT ,

at each evolution step we scale-up the computed erosion,

obtaining the erosion in that year. Figure 14 shows the blade

geometry at the beginning and end of the evolution steps.

The maximum erosion thickness is 0.0012 m after 20 years.

We use the airfoil geometry from the middle section of

the eroded blade strip to perform 2D computations at differ-

ent AoA and obtain the lift and drag coefficients CL and CD.

We use the software XFOIL [89] for the computations. De-

spite the non-smooth nature of the eroded geometry, partly

because of the limited size of the significant-erosion area, we

were able to obtain converged and reasonable solutions for

AoA values from 1

�
to 15

�
. Figure 15 shows the comparison

of CL and CD for the original and eroded airfoil geometries

with the experimental data [88]. The eroded airfoil has lower

lift coefficient, higher drag, and thus, lower aerodynamic ef-

ficiency. Figure 15 also shows a reasonably good agreement

between the computed and experimental data.
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Fig. 8 Rain erosion. Streamlines (black) and mass center trajectories

for the particle clouds (red) at the middle section of the blade strip at

different AoA, for the first evolution step (with the initial geometry)
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Fig. 9 Rain erosion. Erosion patterns at the middle section of the blade

strip at different AoA, for the first evolution step
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Fig. 10 Sand erosion. Geometry evolution, initial and final meshes,

and pressure for the first (black) and last (red) evolution steps, at the

middle section of the blade strip
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Fig. 11 Sand erosion. Normalized impact count (top) and erosion (bottom), at the end of the first (left) and last (right) evolution steps
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AoA = -2.2° (Lift = 0)

AoA = 2°

AoA = 6°

AoA = 10°

Fig. 12 Sand erosion. Streamlines (black) and mass center trajectories

for the particle clouds (red) at the middle section of the blade strip at

different AoA, for the first evolution step (with the initial geometry)
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Fig. 13 Sand erosion. Erosion patterns at the middle section of the

blade strip at different AoA, for the first evolution step
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Fig. 14 Rain erosion field application. Geometry at the middle section

of the blade strip at the beginning and end of the evolution steps
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Fig. 15 Computed and experimental aerodynamic coefficients for the

original and eroded airfoil geometries
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9 Concluding remarks

We have presented an integrated method for computational

analysis of wind-turbine blade rain and sand erosion. The

analysis is valuable because rain and sand erosion, over long

periods of time, can degrade the aerodynamic performance

and therefore the power production. Being able to predict

how the erosion evolves as time passes could lead to im-

provement of the wind-turbine technology and help engi-

neers have a better understanding of the maintenance and

protection requirements. The analysis is challenging because

it involves rotating turbulent flows, large number of particles

carried by the flow, turbulent dispersion of particles, and the

blade geometry change due to the erosion has a very long

time scale compared to the fluid–particle dynamics.

The main components of the integrated method are

the SUPG and PSPG stabilizations, a finite element PCT

method, an erosion model based on two time scales, and the

SEMMT. The turbulent-flow nature of the analysis is han-

dled with a RANS model and the SUPG/PSPG stabilization,

complemented with the DRDJ stabilization. The particle-

cloud trajectories are calculated based on the computed flow

field and closure models defined for the turbulent dispersion

of particles. One-way dependence is assumed between the

flow and particle dynamics. Because a single time-marching

simulation with the typical time-step size of the flow compu-

tation is not practical, we use a sequence of evolution steps

to represent the impact of the erosion. A scale-up factor re-

lates the erosions and particle counts in the evolution steps

to those in the fluid–particle simulation. The factor is calcu-

lated based on a threshold erosion value that we expect to

alter the blade aerodynamics from its current operation pat-

tern or a threshold operation period that we expect to be long

enough to alter the blade aerodynamics. As the blade geom-

etry evolves due to the erosion, the mesh is updated with

the SEMMT, which not only protects the smaller elements

from mesh deformation, but also protects the thin layers of

elements near the blade surface.

We presented computational analysis of rain and sand

erosion for a wind-turbine blade strip, including a case with

actual rainfall data and experimental aerodynamic data for

eroded airfoil geometries. We showed that the analysis can

provide valuable information, such as how the AoA influ-

ences the particle trajectories and erosion patterns, what part

of the blade section is more vulnerable to erosion, and how

long it takes for the erosion to reach a specified level. We

also showed, with experimental verification, how the anal-

ysis can predict the aerodynamic-performance degradation

due to the erosion.

Acknowledgment

This work was supported in part by Sapienza Univer-

sity of Rome “Progetti Grandi 2017” grant “Develop-

ment of advanced modeling techniques for coupled multi-

physics in open and ducted rotor fluid machines” - n. prot.

RG11715C81D7D03A. The mathematical model and com-

putational method parts of the work were also supported in

part by Grant-in-Aid for Challenging Exploratory Research

16K13779 from JSPS and Grant-in-Aid for Scientific Re-

search (S) 26220002 from the Ministry of Education, Cul-

ture, Sports, Science and Technology of Japan (MEXT) (for

the 5th author) and ARO Grant W911NF-17-1-0046 and Top

Global University Project of Waseda University (for the last

author).

A Blade rainfall for the general case

In Section 8.3, the expressions given for the rainwater fraction and

blade rainfall were based on the assumption that the rainfall is vertical,

the blade velocity is horizontal, and the inflow plane is perpendicular to

the blade velocity vector. Here we provide expressions for the general

case, without these assumptions.

We define the raindrop velocity as a vector, VVV R, with the rain

falling at an angle gR, measured from the vertical axis, as seen in Figure

16. The rainfall rate can be written as

Fig. 16 Vectors of the blade rainfall for the general case

VRF = bRVR cosgR, (82)

where VR = kVVV Rk. From that we obtain the rainwater fraction:

bR =
VRF

VR cosgR
. (83)

We define the blade velocity also as a vector, VVV B, and the unit

normal vector of the inflow plane is nnnPINF , as seen in Figure 16. The

blade rainfall rate can then be written as

VBRF = bR(VVV B �VVV R) ·nnnPINF =
VRF

VR cosgR
(VVV B �VVV R) ·nnnPINF , (84)

where VB = kVVV Bk. With that, the annual rainfall for the blade is

HY
BRF =

HY
RF

VR cosgR
(VVV B �VVV R) ·nnnPINF . (85)

If the inflow plane is perpendicular to the blade velocity vector,

nnnPINF = VVV B
VB

, which is typically the case, then the annual rainfall for

the blade becomes

HY
BRF =

HY
RF

VR cosgR

✓
VB �

VVV B

VB
·VVV R

◆
=

HY
RF

cosgR

✓
VB

VR
� VVV B ·VVV R

VBVR

◆
.

(86)



20

References

1. K. Wood, “Blade repair: Closing the maintenance gap”, Compos-
ites Technology, (2011).

2. 3M. “A 3m study is the first to show the effects

of erosion on wind turbine efficiency. [online], 2011

www.pressebox.com/pressrelease/3m- deutschland- gmbh/a-

3m- study- is- the- first- to- show- the- effects- of- erosion- on-

wind- turbine- efficiency/boxid/445007”, 2011.

3. A. Castorrini, A. Corsini, F. Rispoli, P. Venturini, K. Takizawa,

and T.E. Tezduyar, “SUPG/PSPG computational analysis of rain

erosion in wind-turbine blades”, in Y. Bazilevs and K. Takizawa,

editors, Advances in Computational Fluid–Structure Interaction
and Flow Simulation: New Methods and Challenging Computa-
tions, Modeling and Simulation in Science, Engineering and Tech-

nology, 77–96, Springer, 2016, ISBN 978-3-319-40825-5.

4. A. Castorrini, A. Corsini, F. Rispoli, P. Venturini, K. Takizawa,

and T.E. Tezduyar, “Computational analysis of wind-turbine blade

rain erosion”, Computers & Fluids, 141 (2016) 175–183, doi:

10.1016/j.compfluid.2016.08.013.

5. A. Corsini, A. Castorrini, E. Morei, F. Rispoli, F. Sciulli, and

P. Venturini, “Modeling of rain drop erosion in a multi-MW wind

turbine”, in ASME Turbo Expo, Montreal, Canada, (2015).

6. M.F. Hussein and W. Tabakoff, “Computation and plotting of

solid particle flow in rotating cascades”, Computers & Fluids,

2 (1974) 1–15.

7. A.A. Hamed, W. Tabakoff, R.B. Rivir, K. Das, and P. Arora, “Tur-

bine blade surface deterioration by erosion”, Journal of Turboma-
chinery, 127 (2005) 445–452.

8. A. Hamed, W. Tabakoff, R. Swar, D. Shin, N. Woggon, and

R. Miller, “Combined experimental and numerical simulations of

thermal barrier coated turbine blades erosion”, (2013).

9. A. Ghenaiet, “Numerical study of sand ingestion through a ven-

tilating system”, in Proceedings of the World Congress on Engi-
neering, volume 2, (2009) 1–3.

10. M. Suzuki and M. Yamamoto, “Numerical simulation of sand ero-

sion phenomena in a single-stage axial compressor”, Journal of
Fluid Science and Technology, 6 (2011) 98–113.

11. A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-

Galerkin formulations for convection dominated flows with par-

ticular emphasis on the incompressible Navier-Stokes equa-

tions”, Computer Methods in Applied Mechanics and Engineer-
ing, 32 (1982) 199–259.

12. T.E. Tezduyar, “Stabilized finite element formulations for incom-

pressible flow computations”, Advances in Applied Mechanics,

28 (1992) 1–44, doi: 10.1016/S0065-2156(08)70153-4.

13. L.L. Baxter and P.J. Smith, “Turbulent dispersion of particles: the

stp model”, Energy and Fuels, 7 (1993) 852–859.

14. P. Venturini, Modelling of particle-wall deposition in two-phase
gas-solid flows, Ph.D. thesis, Sapienza University of Rome, 2010.

15. L. Cardillo, A. Corsini, G. Delibra, F. Rispoli, A.G. Sheard,

and P. Venturini, “Simulation of particle-laden flows in a large

centrifugal fan for erosion prediction”, in 58th American Soci-
ety of Mechanical Engineers Turbine and Aeroengine Congress,

D¨usseldorf, Germany, (2015).

16. S.K. Kaer, Numerical investigation of ash deposition in straw-fired
furnaces, Ph.D. thesis, Aalborg University, Denmark, 2001.

17. A. Corsini, A. Marchegiani, F. Rispoli, and P. Venturini, “Pre-

dicting blade leading edge erosion in an axial induced draft

fan”, ASME Journal of Engineering for Gas Turbines and Power,

134 (1993).

18. T.E. Tezduyar and Y.J. Park, “Discontinuity capturing finite el-

ement formulations for nonlinear convection-diffusion-reaction

equations”, Computer Methods in Applied Mechanics and Engi-
neering, 59 (1986) 307–325, doi: 10.1016/0045-7825(86)90003-

4.

19. A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Im-

proved discontinuity-capturing finite element techniques for reac-

tion effects in turbulence computation”, Computational Mechan-
ics, 38 (2006) 356–364, doi: 10.1007/s00466-006-0045-x.

20. A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tez-

duyar, “A multiscale finite element formulation with discontinu-

ity capturing for turbulence models with dominant reactionlike

terms”, Journal of Applied Mechanics, 76 (2009) 021211, doi:

10.1115/1.3062967.

21. A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite

element formulation for computing turbulent reacting flows in gas

turbine combustors”, Computational Mechanics, 46 (2010) 159–

167, doi: 10.1007/s00466-009-0441-0.

22. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite el-

ement computation of NOx emission in aero-engine combus-

tors”, International Journal for Numerical Methods in Fluids,

65 (2011) 254–270, doi: 10.1002/fld.2451.

23. T.E. Tezduyar and T.J.R. Hughes, “Finite element formula-

tions for convection dominated flows with particular emphasis

on the compressible Euler equations”, in Proceedings of AIAA
21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno,

Nevada, (1983).

24. T.J.R. Hughes and T.E. Tezduyar, “Finite element methods for

first-order hyperbolic systems with particular emphasis on the

compressible Euler equations”, Computer Methods in Applied Me-
chanics and Engineering, 45 (1984) 217–284, doi: 10.1016/0045-

7825(84)90157-9.

25. T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations

with weighting functions dependent upon spatial and temporal dis-

cretization: Applications to transient convection-diffusion prob-

lems”, Computer Methods in Applied Mechanics and Engineer-
ing, 59 (1986) 49–71, doi: 10.1016/0045-7825(86)90023-X.

26. G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG

finite element computation of compressible flows with the entropy

and conservation variables formulations”, Computer Methods in
Applied Mechanics and Engineering, 104 (1993) 397–422, doi:

10.1016/0045-7825(93)90033-T.

27. T.E. Tezduyar and Y. Osawa, “Finite element stabilization param-

eters computed from element matrices and vectors”, Computer
Methods in Applied Mechanics and Engineering, 190 (2000) 411–

430, doi: 10.1016/S0045-7825(00)00211-5.

28. T.E. Tezduyar, “Computation of moving boundaries and interfaces

and stabilization parameters”, International Journal for Numeri-
cal Methods in Fluids, 43 (2003) 555–575, doi: 10.1002/fld.505.

29. T.E. Tezduyar, “Finite element methods for fluid dynamics with

moving boundaries and interfaces”, in E. Stein, R.D. Borst, and

T.J.R. Hughes, editors, Encyclopedia of Computational Mechan-
ics, Volume 3: Fluids, Chapter 17, Wiley, 2004, ISBN 978-0-470-

84699-5.

30. T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations

and moving boundaries and interfaces”, Computers & Fluids,

36 (2007) 191–206, doi: 10.1016/j.compfluid.2005.02.011.

31. T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing

parameters in SUPG formulation of compressible flows”,

Computer Methods in Applied Mechanics and Engineering,

195 (2006) 1621–1632, doi: 10.1016/j.cma.2005.05.032.

32. T.E. Tezduyar and M. Senga, “SUPG finite element com-

putation of inviscid supersonic flows with YZb shock-

capturing”, Computers & Fluids, 36 (2007) 147–159, doi:

10.1016/j.compfluid.2005.07.009.

33. T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid

supersonic flows around cylinders and spheres with the SUPG for-

mulation and YZb shock-capturing”, Computational Mechanics,

38 (2006) 469–481, doi: 10.1007/s00466-005-0025-6.

34. T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective

stabilization procedure (EDSSP)”, Computational Mechanics,

38 (2006) 456–468, doi: 10.1007/s00466-006-0056-7.

35. T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure in-

teractions with the space–time finite elements: Solution tech-

niques”, International Journal for Numerical Methods in Fluids,

54 (2007) 855–900, doi: 10.1002/fld.1430.

36. F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element com-

putation of turbulent flows with the discontinuity-capturing direc-

tional dissipation (DCDD)”, Computers & Fluids, 36 (2007) 121–

http://dx.doi.org/10.1016/j.compfluid.2016.08.013
http://dx.doi.org/10.1016/j.compfluid.2016.08.013
http://dx.doi.org/10.1016/S0065-2156(08)70153-4
http://dx.doi.org/10.1016/0045-7825(86)90003-4
http://dx.doi.org/10.1016/0045-7825(86)90003-4
http://dx.doi.org/10.1007/s00466-006-0045-x
http://dx.doi.org/10.1115/1.3062967
http://dx.doi.org/10.1115/1.3062967
http://dx.doi.org/10.1007/s00466-009-0441-0
http://dx.doi.org/10.1002/fld.2451
http://dx.doi.org/10.1016/0045-7825(84)90157-9
http://dx.doi.org/10.1016/0045-7825(84)90157-9
http://dx.doi.org/10.1016/0045-7825(86)90023-X
http://dx.doi.org/10.1016/0045-7825(93)90033-T
http://dx.doi.org/10.1016/0045-7825(93)90033-T
http://dx.doi.org/10.1016/S0045-7825(00)00211-5
http://dx.doi.org/10.1002/fld.505
http://dx.doi.org/10.1016/j.compfluid.2005.02.011
http://dx.doi.org/10.1016/j.cma.2005.05.032
http://dx.doi.org/10.1016/j.compfluid.2005.07.009
http://dx.doi.org/10.1016/j.compfluid.2005.07.009
http://dx.doi.org/10.1007/s00466-005-0025-6
http://dx.doi.org/10.1007/s00466-006-0056-7
http://dx.doi.org/10.1002/fld.1430


21

126, doi: 10.1016/j.compfluid.2005.07.004.

37. T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formu-

lations for incompressible flows with thermal coupling”, Interna-
tional Journal for Numerical Methods in Fluids, 57 (2008) 1189–

1209, doi: 10.1002/fld.1743.

38. F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Compu-

tation of inviscid compressible flows with the V-SGS stabilization

and YZb shock-capturing”, International Journal for Numerical
Methods in Fluids, 54 (2007) 695–706, doi: 10.1002/fld.1447.

39. Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes,

“YZb discontinuity-capturing for advection-dominated processes

with application to arterial drug delivery”, International Jour-
nal for Numerical Methods in Fluids, 54 (2007) 593–608, doi:

10.1002/fld.1484.

40. F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar,

“Computation of inviscid supersonic flows around cylinders

and spheres with the V-SGS stabilization and YZb shock-

capturing”, Journal of Applied Mechanics, 76 (2009) 021209, doi:

10.1115/1.3057496.

41. M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and

T.J.R. Hughes, “Improving stability of stabilized and multiscale

formulations in flow simulations at small time steps”, Computer
Methods in Applied Mechanics and Engineering, 199 (2010) 828–

840, doi: 10.1016/j.cma.2009.06.019.

42. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of

wave-energy air turbines with the SUPG/PSPG formulation and

discontinuity-capturing technique”, Journal of Applied Mechan-
ics, 79 (2012) 010910, doi: 10.1115/1.4005060.

43. A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Compu-

tational analysis of noise reduction devices in axial fans with sta-

bilized finite element formulations”, Computational Mechanics,

50 (2012) 695–705, doi: 10.1007/s00466-012-0789-4.

44. P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and

discontinuity-capturing methods for coupled fluid mechanics and

electrochemical transport problems”, Computational Mechanics,

51 (2013) 171–185, doi: 10.1007/s00466-012-0712-z.

45. A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar,

and P. Venturini, “A variational multiscale method for particle-

cloud tracking in turbomachinery flows”, Computational Mechan-
ics, 54 (2014) 1191–1202, doi: 10.1007/s00466-014-1050-0.

46. F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra,

and T.E. Tezduyar, “Particle tracking and particle–shock inter-

action in compressible-flow computations with the V-SGS sta-

bilization and YZb shock-capturing”, Computational Mechanics,

55 (2015) 1201–1209, doi: 10.1007/s00466-015-1160-3.

47. K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kole-

sar, and C. Habluetzel, “Space–time VMS computation of wind-

turbine rotor and tower aerodynamics”, Computational Mechan-
ics, 53 (2014) 1–15, doi: 10.1007/s00466-013-0888-x.

48. K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST

methods for thermo-fluid analysis of a ground vehicle and its

tires”, Mathematical Models and Methods in Applied Sciences,

25 (2015) 2227–2255, doi: 10.1142/S0218202515400072.

49. K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei,

L. Pan, and K. Montel, “Space–time VMS method for flow

computations with slip interfaces (ST-SI)”, Mathematical Mod-
els and Methods in Applied Sciences, 25 (2015) 2377–2406, doi:

10.1142/S0218202515400126.

50. K. Takizawa, T.E. Tezduyar, and Y. Otoguro, “Stabilization

and discontinuity-capturing parameters for space–time flow

computations with finite element and isogeometric discretiza-

tions”, Computational Mechanics, 62 (2018) 1169–1186, doi:

10.1007/s00466-018-1557-x.

51. Y. Otoguro, K. Takizawa, T.E. Tezduyar, K. Nagaoka, and

S. Mei, “Turbocharger turbine and exhaust manifold flow com-

putation with the Space–Time Variational Multiscale Method

and Isogeometric Analysis”, Computers & Fluids, published

online, DOI: 10.1016/j.compfluid.2018.05.019, May 2018, doi:

10.1016/j.compfluid.2018.05.019.

52. T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Tire aerody-

namics with actual tire geometry, road contact and tire de-

formation”, Computational Mechanics, published online, DOI:

10.1007/s00466-018-1642-1, October 2018, doi: 10.1007/s00466-

018-1642-1.

53. T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the

Dirichlet-to-Neumann formulation, subgrid scale models, bub-

bles, and the origins of stabilized methods”, Computer Methods
in Applied Mechanics and Engineering, 127 (1995) 387–401.

54. M.H. Keegan, D. Nash, and M. Stack, “On erosion issues asso-

ciated with the leading edge of wind turbine blades”, Journal of
Physics D: Applied Physics, 46 (2013) 383001.

55. G.S. Springer, C.-I. Yang, and P.S. Larsen, “Analysis of rain

erosion of coated materials”, Journal of Composite Materials,

8 (1974) 229–252.

56. Y.I. Oka, K. Okamura, and T. Yoshida, “Practical estimation

of erosion damage caused by solid particle impact: Part 1: Ef-

fects of impact parameters on a predictive equation”, Wear,

259 (2005) 95–101.

57. A. Castorrini, A. Corsini, F. Morabito, F. Rispoli, and

P. Venturini, “Numerical simulation with adaptive boundary

method for predicting time evolution of erosion processes”, in

ASME Turbo Expo 2017: Turbomachinery Technical Confer-
ence and Exposition. American Society of Mechanical Engineers,

(2017) V02DT48A019–V02DT48A019.

58. A. Castorrini, P. Venturini, A. Corsini, and F. Rispoli, “Numerical

simulation of the blade aging process in an induced draft fan due to

long time exposition to fly ash particles”, Journal of Engineering
for Gas Turbines and Power, 141 (2019) 011025.

59. T. Tezduyar, “Finite element interface-tracking and interface-

capturing techniques for flows with moving boundaries and in-

terfaces”, in Proceedings of the ASME Symposium on Fluid-
Physics and Heat Transfer for Macro- and Micro-Scale Gas-
Liquid and Phase-Change Flows (CD-ROM), ASME Paper

IMECE2001/HTD-24206, ASME, New York, New York, (2001).

60. T.E. Tezduyar, “Stabilized finite element formulations and

interface-tracking and interface-capturing techniques for incom-

pressible flows”, in M.M. Hafez, editor, Numerical Simulations of
Incompressible Flows, World Scientific, New Jersey, (2003) 221–

239.

61. K. Stein, T.E. Tezduyar, and R. Benney, “Automatic mesh

update with the solid-extension mesh moving technique”,

Computer Methods in Applied Mechanics and Engineering,

193 (2004) 2019–2032, doi: 10.1016/j.cma.2003.12.046.

62. T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space–time fi-

nite element techniques for computation of fluid–structure inter-

actions”, Computer Methods in Applied Mechanics and Engineer-
ing, 195 (2006) 2002–2027, doi: 10.1016/j.cma.2004.09.014.

63. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational
Fluid–Structure Interaction: Methods and Applications. Wiley,

February 2013, ISBN 978-0470978771.

64. T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Com-

putation of unsteady incompressible flows with the finite ele-

ment methods: Space–time formulations, iterative strategies and

massively parallel implementations”, in New Methods in Tran-
sient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York,

(1992) 7–24.

65. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal,

“Parallel finite-element computation of 3D flows”, Computer,

26 (1993) 27–36, doi: 10.1109/2.237441.

66. A.A. Johnson and T.E. Tezduyar, “Mesh update strategies in par-

allel finite element computations of flow problems with moving

boundaries and interfaces”, Computer Methods in Applied Me-
chanics and Engineering, 119 (1994) 73–94, doi: 10.1016/0045-

7825(94)00077-8.

67. K. Stein, T. Tezduyar, and R. Benney, “Mesh moving techniques

for fluid–structure interactions with large displacements”, Journal
of Applied Mechanics, 70 (2003) 58–63, doi: 10.1115/1.1530635.

68. A. Corsini and F. Rispoli, “Flow analyses in a high-pressure axial

ventilation fan with a non-linear eddy viscosity closure”, Interna-

http://dx.doi.org/10.1016/j.compfluid.2005.07.004
http://dx.doi.org/10.1002/fld.1743
http://dx.doi.org/10.1002/fld.1447
http://dx.doi.org/10.1002/fld.1484
http://dx.doi.org/10.1002/fld.1484
http://dx.doi.org/10.1115/1.3057496
http://dx.doi.org/10.1115/1.3057496
http://dx.doi.org/10.1016/j.cma.2009.06.019
http://dx.doi.org/10.1115/1.4005060
http://dx.doi.org/10.1007/s00466-012-0789-4
http://dx.doi.org/10.1007/s00466-012-0712-z
http://dx.doi.org/10.1007/s00466-014-1050-0
http://dx.doi.org/10.1007/s00466-015-1160-3
http://dx.doi.org/10.1007/s00466-013-0888-x
http://dx.doi.org/10.1142/S0218202515400072
http://dx.doi.org/10.1142/S0218202515400126
http://dx.doi.org/10.1142/S0218202515400126
http://dx.doi.org/10.1007/s00466-018-1557-x
http://dx.doi.org/10.1007/s00466-018-1557-x
http://dx.doi.org/10.1016/j.compfluid.2018.05.019
http://dx.doi.org/10.1016/j.compfluid.2018.05.019
http://dx.doi.org/10.1007/s00466-018-1642-1
http://dx.doi.org/10.1007/s00466-018-1642-1
http://dx.doi.org/10.1016/j.cma.2003.12.046
http://dx.doi.org/10.1016/j.cma.2004.09.014
http://dx.doi.org/10.1109/2.237441
http://dx.doi.org/10.1016/0045-7825(94)00077-8
http://dx.doi.org/10.1016/0045-7825(94)00077-8
http://dx.doi.org/10.1115/1.1530635


22

tional Journal of Heat and Fluid Flow, 17 (2005) 108–155.

69. T.J. Craft, B.E. Launder, and K. Suga, “Development and applica-

tion of a cubic eddy-viscosity model of turbulence”, International
Journal of Heat and Fluid Flow, 17 (1996) 108–155.

70. S. Lain and M. Sommerfeld, “Turbulence modulation in dispersed

two-phase flow laden with solids from a lagrangian perspective”,

International Journal of Heat and Fluid Flow, 24 (2003) 616–625.

71. T.E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and

J. Christopher, “Space–time finite element computation of

complex fluid–structure interactions”, International Journal for
Numerical Methods in Fluids, 64 (2010) 1201–1218, doi:

10.1002/fld.2221.

72. K. Takizawa, T.E. Tezduyar, and H. Hattori, “Computa-

tional analysis of flow-driven string dynamics in turboma-

chinery”, Computers & Fluids, 142 (2017) 109–117, doi:

10.1016/j.compfluid.2016.02.019.

73. K. Komiya, T. Kanai, Y. Otoguro, M. Kaneko, K. Hirota,

Y. Zhang, K. Takizawa, T.E. Tezduyar, M. Nohmi, T. Tsuneda,

M. Kawai, and M. Isono, “Computational analysis of flow-driven

string dynamics in a pump and residence time calculation”, in Pro-
ceedings of the 29th IAHR Symposium on Hydraulic Machinery
and Systems, Kyoto, Japan, (2018).

74. T. Kanai, K. Takizawa, T.E. Tezduyar, K. Komiya, M. Kaneko,

K. Hirota, M. Nohmi, T. Tsuneda, M. Kawai, and M. Isono,

“Methods for computation of flow-driven string dynamics in a

pump and residence time”, Mathematical Models and Methods in
Applied Sciences, to appear, 2019.

75. L.L. Baxter, Turbulent transport of particles, Ph.D. thesis,

Brigham Young University, 1989.

76. L.P. Wang, On the dispersion of heavy particles by turbulent mo-
tion, Ph.D. thesis, Washington State University, 1990.

77. L.J. Litchford and S.M. Jeng, “Efficient statistical transport

model for turbulent particle dispersion in sprays”, AIAA Journal,
29 (1991) 1443–1451.

78. S. Jain, Three-dimensional simulation of turbulent particle disper-
sion, Ph.D. thesis, University of Utah, 1995.

79. D. Borello, P. Venturini, F. Rispoli, and G.Z.R. Saavedra, “Pre-

diction of multiphase combustion and ash deposition within a

biomass furnace”, Applied Energy, 101 (2013) 413–422.

80. P. Venturini, D. Borello, C.V. Iossa, D. Lentini, and F. Rispoli,

“Modelling of multiphase combustion and deposit forma-

tion and deposit formation in a biomass-fed boiler”, Energy,

35 (2010) 3008–3021.

81. V. Armenio and V. Fiorotto, “The importance of the forces

acting on particles in turbulent flows”, Physics of Fluids,

13 (2001) 2437–2440.

82. L. Schiller and A. Naumann, “Uber die grundlegenden berech-

nungen bei der schwekraftaubereitung”, Zeitschrift des Vereines
Deutscher Ingenieure, 77 (1933) 318–320.

83. P.J. Smith, “3-D turbulent particle dispersion submodel develop-

ment”, Quarterly progress report, Department of Energy, Pitts-

burgh Energy Technology Center, 1991.

84. A. Corsini, F. Rispoli, and A. Santoriello, “A variational multi-

scale high-order finite element formulation for turbomachinery

flow computations”, Computer Methods in Applied Mechanics
and Engineering, 194 (2005) 4797–4823.

85. S. Arjula, A. Harsha, and M. Ghosh, “Solid-particle erosion be-

havior of high-performance thermoplastic polymers”, Journal of
Materials Science, 43 (2008) 1757–1768.

86. T.E. Tezduyar, K. Takizawa, and Y. Bazilevs, “Fluid–structure in-

teraction and flows with moving boundaries and interfaces”, in

E. Stein, R.D. Borst, and T.J.R. Hughes, editors, Encyclopedia of
Computational Mechanics Second Edition, Part 2 Fluids, Wiley,

published online, December 2017, ISBN 9781119003793.

87. K. Stein and T. Tezduyar, “Advanced mesh update tech-

niques for problems involving large displacements”, in

Proceedings of the Fifth World Congress on Computa-
tional Mechanics, On-line publication: Paper-ID: 81489,

http://www.researchgate.net/publication/303737884/, Vienna,

Austria, (2002).

88. A. Sareen, C.A. Sapre, and M.S. Selig, “Effects of leading

edge erosion on wind turbine blade performance”, Wind Energy,

17 (2014) 1531–1542.

89. M. Drela and H. Youngren, “Xfoil subsonic airfoil development

system”, Software Package, available online at http://web. mit.
edu/drela/Public/web/xfoil [retrieved Feb. 2011], (2008).

http://dx.doi.org/10.1002/fld.2221
http://dx.doi.org/10.1002/fld.2221
http://dx.doi.org/10.1016/j.compfluid.2016.02.019
http://dx.doi.org/10.1016/j.compfluid.2016.02.019

	Introduction
	An integrated method
	Mathematical model
	SUPG/PSPG/DRDJ formulation of the fluid mechanics equations
	Discretized particle equations
	Erosion models and erosion thickness computation
	Mesh update with the SEMMT
	Computations
	Concluding remarks
	Blade rainfall for the general case

