14 research outputs found

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Kidney function, proteinuria and breast arterial calcification in women without clinical cardiovascular disease: The MINERVA study.

    No full text
    BackgroundBreast arterial calcification (BAC) may be a predictor of cardiovascular events and is highly prevalent in persons with end-stage kidney disease. However, few studies to date have examined the association between mild-to-moderate kidney function and proteinuria with BAC.MethodsWe prospectively enrolled women with no prior cardiovascular disease aged 60 to 79 years undergoing mammography screening at Kaiser Permanente Northern California between 10/24/2012 and 2/13/2015. Urine albumin-to-creatinine ratio (uACR), along with specific laboratory, demographic, and medical data, were measured at the baseline visit. Baseline estimated glomerular filtration rate (eGFR), medication history, and other comorbidities were identified from self-report and/or electronic medical records. BAC presence and gradation (mass) was measured by digital quantification of full-field mammograms.ResultsAmong 3,507 participants, 24.5% were aged ≥70 years, 63.5% were white, 7.5% had eGFR 0 mg) was 27.9%. Neither uACR ≥30 mg/g nor uACR ≥300 were significantly associated with BAC in crude or multivariable analyses. Reduced eGFR was associated with BAC in univariate analyses (odds ratio 1.53, 95% CI: 1.18-2.00), but the association was no longer significant after adjustment for potential confounders. Results were similar in various sensitivity analyses that used different BAC thresholds or analytic approaches.ConclusionsAmong women without cardiovascular disease undergoing mammography screening, reduced eGFR and albuminuria were not significantly associated with BAC

    The association between changes in echocardiography and risk of heart failure hospitalizations and death in adults with chronic kidney disease

    No full text
    Abstract Adults with chronic kidney disease (CKD) are at increased risk for developing heart failure (HF). However, longitudinal cardiac remodeling in CKD has not been well-characterized and its association with HF outcomes remains unknown. We evaluated the association between change in echocardiographic parameters between baseline and year 4 with the subsequent risk of HF hospitalization and death using Cox proportional hazard models in a landmark analysis of a prospective multicenter CKD cohort. Among 2673 participants, mean ± SD age was 61 ± 11 years, with 45% women, and 56% non-white. A total of 472 hospitalizations for HF and 776 deaths occurred during a median (interquartile range) follow-up duration of 8.0 (6.3–9.1) years. Patients hospitalized for HF experienced larger preceding absolute increases in left ventricular (LV) volumes and decreases in LV ejection fraction. Adverse changes in LV ejection fraction, LV cavity volume, LV mass index, and LV geometry were independently associated with an increased risk of HF hospitalization and death. Among adults with CKD, deleterious cardiac remodeling occurs over a relatively short timeframe and adverse remodeling is associated with increased risk of HF-related morbidity and mortality

    Non-recovery from dialysis-requiring acute kidney injury and short-term mortality and cardiovascular risk: a cohort study

    Get PDF
    Abstract Background The high mortality and cardiovascular disease (CVD) burden in patients with end-stage renal disease (ESRD) is well-documented. Recent literature suggests that acute kidney injury is also associated with CVD. It is unknown whether patients with incident ESRD due to dialysis-requiring acute kidney injury (AKI-D) are at higher short-term risk for death and CVD events, compared with incident ESRD patients without preceding AKI-D. Few studies have examined the impact of recovery from AKI-D on subsequent CVD risk. Methods In this retrospective cohort study, we evaluated adult members of Kaiser Permanente Northern California who initiated dialysis from January 2009 to September 2015. Preceding AKI-D and subsequent outcomes of death and CVD events (acute coronary syndrome, heart failure, ischemic stroke or transient ischemic attack) were identified from electronic health records. We performed multivariable Cox regression models adjusting for demographics, comorbidities, medication use, and laboratory results. Results Compared to incident ESRD patients who experienced AKI-D (n = 1865), patients with ESRD not due to AKI-D (n = 3772) had significantly lower adjusted rates of death (adjusted hazard ratio [aHR] 0.56, 95% CI: 0.47–0.67) and heart failure hospitalization (aHR 0.45, 0.30–0.70). Compared to AKI-D patients who did not recover and progressed to ESRD, AKI-D patients who recovered (n = 1347) had a 30% lower adjusted relative rate of death (aHR 0.70, 0.55–0.88). Conclusions Patients who transition to ESRD via AKI-D are a high-risk subgroup that may benefit from aggressive monitoring and medical management, particularly for heart failure. Recovery from AKI-D is independently associated with lower short-term mortality
    corecore