128 research outputs found

    Heritable Differences in Catecholamine Signaling Modulate Susceptibility to Trauma and Response to Methylphenidate Treatment: Relevance for PTSD

    Get PDF
    Alterations in cortical catecholamine signaling pathways can modulate acute and enduring responses to trauma. Heritable variation in catecholamine signaling is produced by a common functional polymorphism in the catechol-O-methyltransferase (COMT), with Val carriers exhibiting greater degradation of catecholamines than Met carriers. Furthermore, it has recently been suggested that drugs enhancing cortical catecholamine signaling may be a new therapeutic approach for posttraumatic stress disorder (PTSD) patients. We hypothesized that heritable differences in catecholamine signaling regulate the behavioral response to trauma, and that methylphenidate (MPD), a drug that preferentially blocks catecholamine reuptake in the prefrontal cortex (PFC), exerts COMT-dependent effects on trauma-induced behaviors. We first examined the contribution of the functional mutation COMTval158met to modulate enduring behavioral responses to predator stress in a unique “humanized” COMTval158met mouse line. Animals were exposed to a predator (cat) for 10 min and enduring avoidance behaviors were examined in the open field, light-dark box, and “trauma-reminder” tests 1–2 weeks later. Second, we examined the efficacy of chronic methylphenidate to reverse predator stress effects and if these effects were modulated by COMTval158met genotype. Mice were exposed to predator stress and began treatment with either saline or methylphenidate (3 mg/kg/day) 1 week after stress until the end of the testing [avoidance behaviors, working memory, and social preference (SP)]. In males, predator stress and COMTval158met had an additive effect on enduring anxiety-like behavior, with Val stressed mice showing the strongest avoidance behavior after stress compared to Met carriers. No effect of COMT genotype was observed in females. Therefore methylphenidate effects were investigated only in males. Chronic methylphenidate treatment reversed the stress-induced avoidance behavior and increased social investigation independently of genotype. Methylphenidate effects on working memory, however, were genotype-dependent, decreasing working memory in non-stressed Met carriers, and improving stress-induced working memory deficit in Val carriers. These results suggest that heritable variance in catecholamine signaling modulates the avoidance response to an acute trauma. This work supports recent human findings that methylphenidate might be a therapeutic alternative for PTSD patients and suggests that methylphenidate effects on anxiety (generalized avoidance, social withdrawal) vs. cognitive (working memory) symptoms may be modulated through COMT-independent and dependent mechanisms, respectively

    Restoration of Sp4 in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in Sp4 Hypomorphic Mice.

    Get PDF
    BackgroundKetamine produces schizophrenia-like behavioral phenotypes in healthy people. Prolonged ketamine effects and exacerbation of symptoms after the administration of ketamine have been observed in patients with schizophrenia. More recently, ketamine has been used as a potent antidepressant to treat patients with major depression. The genes and neurons that regulate behavioral responses to ketamine, however, remain poorly understood. Sp4 is a transcription factor for which gene expression is restricted to neuronal cells in the brain. Our previous studies demonstrated that Sp4 hypomorphic mice display several behavioral phenotypes relevant to psychiatric disorders, consistent with human SP4 gene associations with schizophrenia, bipolar disorder, and major depression. Among those behavioral phenotypes, hypersensitivity to ketamine-induced hyperlocomotion has been observed in Sp4 hypomorphic mice.MethodsIn the present study, we used the Cre-LoxP system to restore Sp4 gene expression, specifically in either forebrain excitatory or GABAergic inhibitory neurons in Sp4 hypomorphic mice. Mouse behavioral phenotypes related to psychiatric disorders were examined in these distinct rescue mice.ResultsRestoration of Sp4 in forebrain excitatory neurons did not rescue deficient sensorimotor gating nor ketamine-induced hyperlocomotion. Restoration of Sp4 in forebrain GABAergic neurons, however, rescued ketamine-induced hyperlocomotion, but did not rescue deficient sensorimotor gating.ConclusionsOur studies suggest that the Sp4 gene in forebrain GABAergic neurons regulates ketamine-induced hyperlocomotion

    Factor analysis of attentional set-shifting performance in young and aged mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Executive dysfunction may play a major role in cognitive decline with aging because frontal lobe structures are particularly vulnerable to advancing age. Lesion studies in rats and mice have suggested that intradimensional shifts (IDSs), extradimensional shifts (EDSs), and reversal learning are mediated by the anterior cingulate cortex, the medial prefrontal cortex, and the orbitofrontal cortex, respectively. We hypothesized that the latent structure of cognitive performance would reflect functional localization in the brain and would be altered by aging.</p> <p>Methods</p> <p>Young (4 months, n = 16) and aged (23 months, n = 18) C57BL/6N mice performed an attentional set-shifting task (ASST) that evaluates simple discrimination (SD), compound discrimination (CD), IDS, EDS, and reversal learning. The performance data were subjected to an exploratory factor analysis to extract the latent structures of ASST performance in young and aged mice.</p> <p>Results</p> <p>The factor analysis extracted two- and three-factor models. In the two-factor model, the factor associated with SD and CD was clearly separated from the factor associated with the rest of the ASST stages in the young mice only. In the three-factor model, the SD and CD loaded on distinct factors. The three-factor model also showed a separation of factors associated with IDS, EDS, and CD reversal. However, the other reversal learning variables, ID reversal and ED reversal, had somewhat inconsistent factor loadings.</p> <p>Conclusions</p> <p>The separation of performance factors in aged mice was less clear than in young mice, which suggests that aged mice utilize neuronal networks more broadly for specific cognitive functions. The result that the factors associated with SD and CD were separated in the three-factor model may suggest that the introduction of an irrelevant or distracting dimension results in the use of a new/orthogonal strategy for better discrimination.</p

    Corticotropin-releasing factor receptors in GtoPdb v.2023.1

    Get PDF
    Corticotropin-releasing factor (CRF, nomenclature as agreed by the NC-IUPHAR subcommittee on Corticotropin-releasing Factor Receptors [34]) receptors are activated by the endogenous peptides corticotrophin-releasing hormone, a 41 amino-acid peptide, urocortin 1, 40 amino-acids, urocortin 2, 38 amino-acids and urocortin 3, 38 amino-acids. CRF1 and CRF2 receptors are activated non-selectively by CRH and UCN. CRF2 receptors are selectively activated by UCN2 and UCN3. Binding to CRF receptors can be conducted using radioligands [125I]Tyr0-CRF or [125I]Tyr0-sauvagine with Kd values of 0.1-0.4 nM. CRF1 and CRF2 receptors are non-selectively antagonized by &#945;-helical CRF, D-Phe-CRF-(12-41) and astressin. CRF1 receptors are selectively antagonized by small molecules NBI27914, R121919, antalarmin, CP 154,526, CP 376,395. CRF2 receptors are selectively antagonized by antisauvagine and astressin 2B

    Corticotropin-releasing factor receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Corticotropin-releasing factor (CRF, nomenclature as agreed by the NC-IUPHAR subcommittee on Corticotropin-releasing Factor Receptors [30]) receptors are activated by the endogenous peptides corticotrophin-releasing hormone, a 41 amino-acid peptide, urocortin 1, 40 amino-acids, urocortin 2, 38 amino-acids and urocortin 3, 38 amino-acids. CRF1 and CRF2 receptors are activated non-selectively by CRH and UCN. CRF2 receptors are selectively activated by UCN2 and UCN3. Binding to CRF receptors can be conducted using radioligands [125I]Tyr0-CRF or [125I]Tyr0-sauvagine with Kd values of 0.1-0.4 nM. CRF1 and CRF2 receptors are non-selectively antagonized by &#945;-helical CRF, D-Phe-CRF-(12-41) and astressin. CRF1 receptors are selectively antagonized by small molecules NBI27914, R121919, antalarmin, CP 154,526, CP 376,395. CRF2 receptors are selectively antagonized by antisauvagine and astressin 2B

    Measuring Novel Antecedents of Mental Illness: The Questionnaire of Unpredictability in Childhood

    Get PDF
    Increasing evidence indicates that, in addition to poverty, maternal depression, and other well-established factors, unpredictability of maternal and environmental signals early in life influences trajectories of brain development, determining risk for subsequent mental illness. However, whereas most risk factors for later vulnerability to mental illness are readily measured using existing, clinically available tools, there are no similar measures for assessing early-life unpredictability. Here we validate the Questionnaire of Unpredictability in Childhood (QUIC) and examine its associations with mental health in the context of other indicators of childhood adversity (e.g., traumatic life events, socioeconomic status, and parenting quality). The QUIC was initially validated through administration to a cohort of adult females (N = 116) and then further refined in two additional independent cohorts (male Veterans, N = 95, and male and female adolescents, N = 175). The QUIC demonstrated excellent internal (α = 0.89) and test–retest reliability (r = 92). Scores on the QUIC were positively correlated with other prospective indicators of exposures to unpredictable maternal inputs in infancy and childhood (unpredictable maternal mood and sensory signals), and accuracy of recall also was confirmed with prospective data. Importantly, the QUIC predicted symptoms of anxiety, depression, and anhedonia in the three study cohorts, and these effects persisted after adjusting for other previously established risk factors. The QUIC, a reliable and valid self-report assessment of exposure to unpredictability in the social, emotional, and physical domains during early life, is a brief, comprehensive, and promising instrument for predicting risk for mental illness

    Addendum: Exposure to unpredictability and mental health: Validation of the brief version of the Questionnaire of Unpredictability in Childhood (QUIC-5) in English and Spanish

    Get PDF
    This article is a correction to: Exposure to unpredictability and mental health: Validation of the brief version of the Questionnaire of Unpredictability in Childhood (QUIC-5) in English and Spanish by Lindert, N. G., Maxwell, M. Y., Liu, S. R., Stern, H. S., Baram, T. Z., Poggi Davis, E., Risbrough, V. B., Baker, D. G., Nievergelt, C. M., and Glynn, L. M. (2022). Front. Psychol. 13:971350. doi: 10.3389/fpsyg.2022.97135
    corecore