88 research outputs found

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey

    Get PDF
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-percent Survey. The One-percent Survey was one of DESI’s survey validation programs conducted from 2021 April to May, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r 100 × more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-Percent Survey

    Full text link
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-Percent Survey. The One-Percent Survey was one of DESI's survey validation programs conducted from April to May 2021, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r<19.5r < 19.5 magnitude-limited BGS Bright sample and 95,499 galaxies in the fainter surface brightness and color selected BGS Faint sample over z<0.6z < 0.6. We derive pSMFs from posteriors of stellar mass, MM_*, inferred from DESI photometry and spectroscopy using the Hahn et al. (2022a; arXiv:2202.01809) PRObabilistic Value-Added BGS (PROVABGS) Bayesian SED modeling framework. We use a hierarchical population inference framework that statistically and rigorously propagates the MM_* uncertainties. Furthermore, we include correction weights that account for the selection effects and incompleteness of the BGS observations. We present the redshift evolution of the pSMF in BGS as well as the pSMFs of star-forming and quiescent galaxies classified using average specific star formation rates from PROVABGS. Overall, the pSMFs show good agreement with previous stellar mass function measurements in the literature. Our pSMFs showcase the potential and statistical power of BGS, which in its main survey will observe >100×\times more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision.Comment: 25 pages, 12 figures; data used to generate figures is available at https://doi.org/10.5281/zenodo.8018936; submitted to Ap

    DESI Observations of the Andromeda Galaxy: Revealing the Immigration History of our Nearest Neighbor

    Full text link
    We present DESI observations of the inner halo of M31, which reveal the kinematics of a recent merger - a galactic immigration event - in exquisite detail. Of the 11,416 sources studied in 3.75 hour of on-sky exposure time, 7,438 are M31 sources with well measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1 - 2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H]>0.5>-0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to be log10MNFW(<125kpc)/M=11.800.10+0.12{\rm log_{10}}\, M_{\rm NFW}(<125\,{\rm kpc})/M_\odot = 11.80_{-0.10}^{+0.12}. The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.Comment: 45 pages, 22 figures, 8 tables; Astrophysical Journal in press; Data at https://zenodo.org/record/697749

    The DESI One-Percent Survey: Exploring the Halo Occupation Distribution of Luminous Red Galaxies and Quasi-Stellar Objects with AbacusSummit

    Full text link
    We present the first comprehensive Halo Occupation Distribution (HOD) analysis of the DESI One-Percent survey Luminous Red Galaxy (LRG) and Quasi-Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 Mpc/h in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of fsat = 11+-1%, a mean halo mass of log10 Mh = 13.40+0.02-0.02, and a linear bias of blin = 1.93+0.06-0.04. For LRGs in 0.6 < z < 0.8, we find fsat = 14+-1%, log10 Mh = 13.24+0.02-0.02, and blin = 2.08+0.03-0.03. For QSOs, we infer fsat = 3+8-2%, log10 Mh = 12.65+0.09-0.04, and blin = 2.63+0.37-0.26 in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high-fidelity galaxy mocks. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealing significant and interesting trends in mean halo mass, linear bias, and satellite fraction.Comment: Submitted to MNRAS, comments welcom

    The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation

    Get PDF
    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z 10 million galaxies spanning 14,000 deg2 . In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target an r 80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements at z < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g., N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter

    A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5

    Full text link
    In this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z=1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimensions, to address the problems of inflation, dark energy, light relativistic species, and dark matter. These spectroscopic data will also complement the next generation of weak lensing, line intensity mapping and CMB experiments and allow them to reach their full potential.Comment: Contribution to Snowmass 202
    corecore