4 research outputs found

    Circulating adrenomedullin and B-type natriuretic peptide do not predict blood pressure fluctuations during pheochromocytoma resection: a cross-sectional study

    Get PDF
    Background: Despite adequate presurgical management, blood pressure fluctuations are common during resection of pheochromocytoma or sympathetic paraganglioma (PPGL). To a large extent, the variability in blood pressure control during PPGL resection remains unexplained. Adrenomedullin and B-type natriuretic peptide, measured as MR-proADM and NT-proBNP, respectively, are circulating biomarkers of cardiovascular dysfunction. We investigated whether plasma levels of MR-proADM and NT-proBNP are associated with blood pressure fluctuations during PPGL resection. Methods: Study subjects participated in PRESCRIPT, a randomized controlled trial in patients undergoing PPGL resection. MR-proADM and NT-proBNP were determined in a single plasma sample drawn before surgery. Multivariable linear and logistic regression analyses were used to explore associations between these biomarkers and blood pressure fluctuations, use of vasoconstrictive agents during surgery as well as the occurrence of perioperative cardiovascular events. Results: A total of 126 PPGL patients were included. Median plasma concentrations of MR-proADM and NT-proBNP were 0.51 (0.41-0.63) nmol/L and 68.7 (27.9-150.4) ng/L, respectively. Neither MR-proADM nor NT-proBNP were associated with blood pressure fluctuations. There was a positive correlation between MR-proADM concentration and the cumulative dose of vasoconstrictive agents (03B2 0.44, P = 0.001). Both MR-proADM and NT-proBNP were significantly associated with perioperative cardiovascular events (OR: 5.46, P = 0.013 and OR: 1.54, P = 0.017, respectively). Conclusions: plasma MR-proADM or NT-proBNP should not be considered as biomarkers for the presurgical risk assessment of blood pressure fluctuations during PPGL resection. Future studies are needed to explore the potential influence of these biomarkers on the intraoperative requirement of vasoconstrictive agents and the perioperative cardiovascular risk.Diabetes mellitus: pathophysiological changes and therap

    Effects of Potassium or Sodium Supplementation on Mineral Homeostasis: A Controlled Dietary Intervention Study

    Get PDF
    CONTEXT: Although dietary potassium and sodium intake may influence calcium-phosphate metabolism and bone health, the effects on bone mineral parameters, including fibroblast growth factor 23 (FGF23), are unclear. OBJECTIVE: Here, we investigated the effects of potassium or sodium supplementation on bone mineral parameters. DESIGN, SETTING, PARTICIPANTS: We performed a post hoc analysis of a dietary controlled randomized, blinded, placebo-controlled crossover trial. Prehypertensive individuals not using antihypertensive medication (n = 36) received capsules containing potassium chloride (3 g/d), sodium chloride (3 g/d), or placebo. Linear mixed-effect models were used to estimate treatment effects. RESULTS: Potassium supplementation increased plasma phosphate (from 1.10 ± 0.19 to 1.15 ± 0.19 mmol/L, P = 0.004), in line with an increase in tubular maximum of phosphate reabsorption (from 0.93 ± 0.21 to 1.01 ± 0.20 mmol/L, P < 0.001). FGF23 decreased (114.3 [96.8-135.0] to 108.5 [93.5-125.9] RU/mL, P = 0.01), without change in parathyroid hormone and 25-hydroxy vitamin D3. Fractional calcium excretion decreased (from 1.25 ± 0.50 to 1.11 ± 0.46 %, P = 0.03) without change in plasma calcium. Sodium supplementation decreased both plasma phosphate (from 1.10 ± 0.19 to 1.06 ± 0.21 mmol/L, P = 0.03) and FGF23 (from 114.3 [96.8-135.0] to 108.7 [92.3-128.1] RU/mL, P = 0.02). Urinary and fractional calcium excretion increased (from 4.28 ± 1.91 to 5.45 ± 2.51 mmol/24 hours, P < 0.001, and from 1.25 ± 0.50 to 1.44 ± 0.54 %, P = 0.004, respectively). CONCLUSIONS: Potassium supplementation led to a decrease in FGF23, which was accompanied by increase in plasma phosphate and decreased calcium excretion. Sodium supplementation reduced FGF23, but this was accompanied by dec

    Effects of potassium supplementation on markers of osmoregulation and volume regulation: results of a fully controlled dietary intervention study

    No full text
    OBJECTIVE: Lifestyle measures including dietary sodium restriction and increased potassium intake are recognized to lower blood pressure (BP). Potassium was found to be effective in reducing BP at higher levels of sodium intake, but to have little effect when sodium intake is restricted. The humoral mechanisms underlying these sodium intake dependent effects of potassium are unknown. We investigated the effects of potassium supplementation on top of a fully controlled sodium-restricted diet on markers of osmoregulation and volume regulation. METHODS: In this post-hoc analysis, we included 35 (pre)hypertensive individuals participating in a randomized, double-blind, placebo-controlled crossover trial. Individuals received capsules containing sodium [3.0 g (130 mmol)/day], potassium [2.8 g (72 mmol)/day], or placebo for three four-week periods. Linear mixed-effect models were used to estimate the effects of potassium supplementation compared with placebo. Skewed data were ln-transformed before analysis. RESULTS: Increased potassium intake was associated with a significant decrease in 24-h BP (-3.6/-1.6 mmHg). Furthermore, we found a significant decrease in ln MR-proANP {-0.08 [95% confidence interval (95% CI)] (-0.15, -0.01) pmol/l, P = 0.03} and significant increases in 24-h heart rate [2.5 (0.9, 4.0) bpm, P = 0.002], ln plasma copeptin [0.11 (0.01, 0.20) pmol/l, P = 0.02], ln renin [0.34 (0.08, 0.60) μIU/ml, P = 0.01], and ln aldosterone [0.14 (0.07, 0.22) nmol/l, P < 0.001] compared with placebo. CONCLUSIONS: We found that potassium has BP-lowering effects during sodium restriction. These BP-lowering effects, however, seem mitigated by several counter regulatory mechanisms (i.e. increased secretion of vasopressin, stimulation of RAAS, and increased heart rate) that were activated to maintain volume homeostasis and counterbalance the decrease in BP

    Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial

    No full text
    Vitamin K deficiency is common among kidney transplant recipients (KTRs) and likely contributes to progressive vascular calcification and stiffness. In this single-center, randomized, double-blind, placebo-controlled trial, we aimed to investigate the effects of vitamin K supplementation on the primary end point, serum calcification propensity (calciprotein particle maturation time, T50), and secondary end points arterial stiffness (pulse wave velocity [PWV]) and vitamin K status in 40 vitamin K-deficient KTRs (plasma dephosphorylated uncarboxylated matrix Gla protein [dp-ucMGP] >= 500 pmol/L). Participants (35% female; age, 57 +/- 13 years) were randomized 1:1 to vitamin K2 (menaquinone-7, 360 mu g/day) or placebo for 12 weeks. Vitamin K supplementation had no effect on calcification propensity (change in T50 vs baseline +2.3 +/- 27.4 minutes) compared with placebo (+0.8 +/- 34.4 minutes; Pbetween group = .88) but prevented progression of PWV (change vs baseline-0.06 +/- 0.26 m/s) compared with placebo (+0.27 +/- 0.43 m/s; Pbetween group = .010). Vitamin K supplementation strongly improved vitamin K status (change in dp-ucMGP vs baseline-385 [-631 to-269] pmol/L) compared with placebo (+39 [-188 to +183] pmol/L; Pbetween group < .001), although most patients remained vitamin K-deficient. In conclusion, vitamin K supplementation did not alter serum calcification propensity but prevented progression of arterial stiffness, suggesting that vitamin K has vascular effects independent of calciprotein particles. These results set the stage for longer-term intervention studies with vitamin K supplementation in KTRs.Trial registry: EU Clinical Trials Register (EudraCT Number: 2019-004906-88) and the Dutch Trial Register (NTR number: NL7687)
    corecore