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Context:  Although dietary potassium and sodium intake may influence calcium-phosphate 
metabolism and bone health, the effects on bone mineral parameters, including fibroblast 
growth factor 23 (FGF23), are unclear.

Objective:  Here, we investigated the effects of potassium or sodium supplementation on bone 
mineral parameters.

Design, setting, participants:  We performed a post hoc analysis of a dietary controlled 
randomized, blinded, placebo-controlled crossover trial. Prehypertensive individuals not 
using antihypertensive medication (n = 36) received capsules containing potassium chloride 
(3 g/d), sodium chloride (3 g/d), or placebo. Linear mixed-effect models were used to estimate 
treatment effects.

Results:  Potassium supplementation increased plasma phosphate (from 1.10 ± 0.19 to 
1.15 ± 0.19 mmol/L, P = 0.004), in line with an increase in tubular maximum of phosphate 
reabsorption (from 0.93 ± 0.21 to 1.01 ± 0.20 mmol/L, P < 0.001). FGF23 decreased (114.3 
[96.8-135.0] to 108.5 [93.5-125.9] RU/mL, P = 0.01), without change in parathyroid hormone 
and 25-hydroxy vitamin D3. Fractional calcium excretion decreased (from 1.25 ± 0.50 to 
1.11 ± 0.46 %, P = 0.03) without change in plasma calcium. Sodium supplementation 
decreased both plasma phosphate (from 1.10 ± 0.19 to 1.06 ± 0.21 mmol/L, P = 0.03) and 
FGF23 (from 114.3 [96.8-135.0] to 108.7 [92.3-128.1] RU/mL, P = 0.02). Urinary and fractional 
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calcium excretion increased (from 4.28 ± 1.91 to 5.45 ± 2.51 mmol/24 hours, P < 0.001, and 
from 1.25 ± 0.50 to 1.44 ± 0.54 %, P = 0.004, respectively).

Conclusions:  Potassium supplementation led to a decrease in FGF23, which was accompanied 
by increase in plasma phosphate and decreased calcium excretion. Sodium supplementation 
reduced FGF23, but this was accompanied by decrease in phosphate and increase in fractional 
calcium excretion. Our results indicate distinct effects of potassium and sodium intake on bone 
mineral parameters, including FGF23. (J Clin Endocrinol Metab 105: 1–11, 2020)

Clinical Trial Registration number:  NCT01575041

Key Words:   Diet controlled clinical trial, nutrition, fibroblast growth factor 23, calcium-
phosphate metabolism, potassium, sodium

The Western diet is characterized by a high sodium 
and low potassium content (1), and it has been as-

sociated with noncommunicable diseases such as hyper-
tension, cardiovascular, chronic kidney, and mineral and 
bone disorders (2–4). More specifically, high intake of 
sodium and low intake of potassium have been linked 
with an increased risk of cardiovascular disease and 
mortality (5–8). Mechanistically, these associations are 
likely at least in part mediated by blood pressure, but 
additional factors may be involved.

Deregulations in bone and mineral metabolism, 
including hyperphosphatemia, 25-hydroxy vitamin D3 
(25[OH]-vitamin D3) deficiency, hyperparathyroidism, 
and high levels of the phosphaturic hormone fibro-
blast growth factor 23 (FGF23), have been associated 
with adverse outcomes in various populations (9–14). 
25[OH]-vitamin D3 is converted to biological active 
1,25[OH]2-vitamin D3 predominantly in the kidneys by 
1-α-hydroxylase. Active vitamin D stimulates calcium 
and phosphate reabsorption in the gut, thus increasing 
plasma calcium. 25[OH]-vitamin D3 deficiency may 
lead to decreased plasma calcium, which triggers PTH 
production (15, 16). PTH increases bone resorption of 
calcium, suppresses renal phosphate reabsorption, and 
increases conversion of vitamin D. FGF23 inhibits renal 
phosphate reabsorption and 1-α-hydroxylase, inhibiting 
conversion of 25[OH]-vitamin D3 to 1,25[OH]2-
vitamin D3 (17). Vitamin D, PTH, and FGF23 are part 
of intertwined feedback loops regulating the calcium 
and phosphate balance (18–20).

FGF23 is more and more identified to be a 
cardiovascular-related detrimental factor (21–23), and 
several strategies to reduce FGF23 levels have been 
studied extensively (24). Interestingly, recent studies 
suggest that lower potassium intake is associated with a 
higher FGF23 level (25) and that changes in potassium 
or sodium homeostasis may influence bone and mineral 
parameters and bone health (26–29). A study found that 
a varying amount of salt and a Dietary Approaches to 
Stop Hypertension diet, which is among other things 

high in potassium, could improve bone turnover 
markers and calcium metabolism (30). However, the 
specific effects of altered potassium or sodium intake 
on bone and mineral parameters, and particularly cal-
cium/phosphate-regulating hormones including FGF23, 
in humans remain unclear.

Here, we performed a post hoc analysis in a dietary 
controlled randomized, blinded, placebo-controlled 
crossover trial in prehypertensive individuals. In the 
current study, we investigated the effects of sodium or 
potassium supplementation, in the context of a con-
trolled diet, on bone and mineral parameters.

Subjects and Methods

Study design
We analyzed a double-blinded, randomized, placebo-

controlled, crossover study that assessed the effects 
of both potassium and sodium supplementation on 
blood pressure and vascular function in untreated 
prehypertensive individuals (i.e., individuals with a 
morning office systolic blood pressure [SBP] between 
130 and 159 mm Hg after an overnight fasting) who did 
not use antihypertensive medication. The study protocol 
has been extensively described before (31). In brief, 
the participants were provided with a controlled diet, 
which contained on average 2.4  g (104  mmol) of so-
dium, based on the recommended maximum sodium in-
take of 2.0 to 2.4 g per day (which equals 87-104 mmol 
sodium or 5-6 g salt per day), and 2.3 g (59 mmol) of 
potassium per day for a 2500-kcal intake. The research 
facility supplied 90% of the daily energy needs, the re-
maining 10% were chosen by the participants from a 
list of products that were low in sodium and potas-
sium. The average composition of the diet was calcu-
lated for which nutrient values were obtained from the 
Dutch food composition table (32), these values were 
described in a previously published work (31). For this 
study, we calculated the average phosphorus intake of 
the diet which was 2004 mg/d and standardized to 2500 
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kcal this would be 1806 mg/d. After a run-in period of 
1 week on the controlled diet (“baseline”), individuals 
were randomized to take 8 sodium chloride capsules 
(i.e., 3.0 g = 130 mmol sodium), 8 potassium chloride 
capsules (i.e., 2.8 g = 72 mmol potassium), or 8 placebo 
capsules (cellulose) daily, for 4 weeks each. Individuals 
were weighed twice a week and, if needed, their energy 
intake was adjusted to keep body weight constant.

Participants, eligibility, and consent
Eligible participants were 40 to 80 years old, with a 

fasting office SBP of 130 to 159 mm Hg. Exclusion cri-
teria were diabetes mellitus, kidney diseases including 
chronic kidney disease (CKD), and gastrointestinal and 
liver diseases. Participants were also ineligible for par-
ticipation if they were current smokers; had a body mass 
index >40 kg/m2; used medication that affected the car-
diovascular system; used nutritional supplements; were 
on an energy-restricted or a medically prescribed diet; 
were women with premenopausal status or were taking 
oral contraceptives or estrogen replacement therapy; 
had unstable weight or used alcohol over 21 (women), 
or 28 (men) consumptions per week. Participants were 
recruited from December 2011 to April 2012.

Measurements
Participants underwent venous blood sampling after 

the end of each treatment period at fixed time points of 
the day throughout the study, and collected 24 hours 
of urine. Serum, EDTA-plasma, and urine samples 
were stored at –80°C, and electrolytes were measured 
using routine laboratory procedures (Modular P, Roche 
Diagnostics, Mannheim, Germany). C-terminal FGF23 
was determined in EDTA-plasma by enzyme-linked im-
munosorbent assay (ELISA, Immutopics, San Clemente, 
CA). The interassay coefficient of variation of this assay 
in our laboratory was < 2.5% (33). PTH and 25[OH]-
vitamin D3, which are involved in renal phosphate 
handling (34), were measured in EDTA-plasma using 
an electrochemiluminescence immunoassay, and isotope 
dilution–online solid phase extraction liquid chroma-
tography–tandem mass spectrometry, respectively.

Estimated glomerular filtration rate (eGFR) was 
calculated using the creatinine-based Chronic Kidney 
Disease Epidemiology Collaboration equation. 
Fractional excretion of phosphate and calcium were 
calculated as follows: Fractional excretion (phosphate/
calcium)  =  Urinary phosphate/calcium [mmol/L] × 
serum creatinine [µmol/L] / plasma phosphate/calcium 
(mmol/L) × urinary creatinine [mmol/L] × 100. The 
kidney tubular maximum reabsorption / GFR (TmP/
GFR) was calculated as a measure of the phosphate 

reabsorption threshold using the following formula 
(35): First tubular reabsorption of phosphate (TRP) was 
calculated: 1  – (urinary phosphate [mmol/L] × serum 
creatinine [μmol/L] / plasma phosphate [mmol/L] × 
urinary creatinine [mmol/L]). If TRP was ≤ 0.86 we 
used the following formula: TmP/GFR = plasma phos-
phate (mmol/L) × TRP. If TRP > 0.86, we used the  
following formula: TmP/GFR = α × TRP, let α = 0.3 × 
TRP / (1 – (0.8 × TRP)).

Ethics
The Medical Ethics Committee of Wageningen 

University approved the study. The trial was registered 
at ClinicalTrials.gov (NCT01575041). The study was 
conducted from March to August 2012 at the research 
center of The Division of Human Nutrition and Health, 
Wageningen University, The Netherlands. All subjects 
gave written and oral informed consent.

Statistics
Normally distributed data are presented as 

mean ± SD, whereas skewed data are presented as geo-
metric mean with 95% confidence interval (CI). For 
each outcome measure, we used a mixed-effects model 
with covariance structure compound symmetry to es-
timate the effect of active treatment compared with 
placebo. Fixed effects were “treatment” and “period”; 
random effect was participant number. Variables were 
natural log transformed when appropriate, as assessed 
with histograms and Q-Q plots, and subsequently 
back-transformed. To correlate the changes of vari-
ables during potassium and sodium supplementation 
Spearman’s rho (rank) correlation was used to deter-
mine the associations between various delta variables. 
Mean percentage change of potassium or sodium sup-
plementation compared with placebo was calculated 
by: ((potassium/sodium [variable] – placebo [vari-
able]) / placebo [variable]) × 100. Findings were con-
sidered statistically significant when P < 0.05. Analyses 
were performed in SAS 9.3 (SAS Institute, Cary, NC), 
and SPSS software, version 23.0, for Windows (IBM, 
Armonk, NY).

Results

Population characteristics
The 36 participants were 65.8 years old (range, 47-80) 

and predominantly male (67%) with a body mass index 
of 27.2  ±  4.7  kg/m2. Participants had mildly elevated 
blood pressure at screening (average SBP, 145 ± 11 mm 
Hg; diastolic blood pressure [DBP], 81  ±  8  mm Hg). 
Baseline characteristics are presented in Table 1.
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Effects of potassium supplementation on bone 
and mineral parameters

Potassium supplementation led to an increase in 
24 hours urinary potassium excretion (from 55  ±  17 
to 118  ±  32  mmol/24 hours), and also to a small in-
crease in plasma potassium (from 4.29  ±  0.32 to 
4.41  ±  0.30  mmol/L). FGF23 levels decreased during 
potassium supplementation compared with placebo 
(geometric mean: from 114.3 RU/mL [95% CI, 96.2-
135.8, P  =  0.01] to 108.5 RU/mL [95% CI, 93.0-
126.6]) (Table 2 and Fig. 1D). The effect of potassium 
supplementation on FGF23 remained after adjustment 
for plasma phosphate (treatment effect: –0.06 [–0.11 to 
–0.02]), and showed similar trends in participants with 
plasma 25(OH)-vitamin D3 levels <50 nmol/L (N = 11, 
FGF23 from 103.4 [81.6-131.0] to 98.7 [78.2-124.6] 
RU/mL) vs participants with plasma 25(OH)-vitamin 
D3 levels >50 nmol/L (N = 24, FGF23 from 121.8 [97.6-
152.1] to 114.9 [94.6-139.5] RU/mL). Compared with 
placebo, plasma phosphate concentration increased 
from 1.10 ± 0.19 to 1.15 ± 0.19 mmol/L (P = 0.004) 
(Table 2). The increase in plasma phosphate coincided 
with a decrease in fractional excretion of phosphate 
(from 15.8 ± 5.8 to 13.3 ± 4.2 %, P < 0.001) and an 
increase in the maximal phosphate tubular reabsorp-
tion, as reflected by the TmP/GFR (from 0.93  ±  0.21 
to 1.01  ±  0.20, P  <  0.001) (Table  2 and Fig.  1A, C). 

Furthermore, the change in TmP/GFR was correlated 
with the change in plasma phosphate (Fig. 2, rs = 0.91, 
P < 0.001). The 24-hour urinary phosphate excretion 
did not change (Table 2 and Fig. 1B). Levels of 25(OH)-
vitamin D3 and PTH also did not change after 4 weeks 
of potassium supplementation (Table  2 and Fig.  1E, 
F). Potassium supplementation did lead to a decrease 
in fractional calcium excretion (from 1.25  ±  0.50 to 
1.11 ± 0.46 %, P = 0.03), and a nonsignificant lower 
trend in 24-hour urinary calcium excretion (from 
4.28  ±  1.91 to 4.05  ±  2.15  mmol/24 hours, P  =  0.3) 
(Table 2). The effect of potassium on fractional calcium 
excretion was relatively large, as reflected by a mean 
percentage change of –10.6% (Table 3). The change in 
FGF23 in response to potassium supplementation cor-
related with the change in urinary calcium excretion 
(rs = 0.34, P < 0.05) (Fig. 2). Potassium supplementation 
did not, however, influence plasma calcium. As reported 
previously, 24-hour SBP and DBP decreased during po-
tassium supplementation (24-hours SBP from 129 ± 14 
to 126 ± 13  mm Hg, 24-hours DBP from 77  ±  8 to 
75 ± 8 mm Hg) (31). Changes in FGF23 were not correl-
ated with changes in blood pressure (Fig. 2). Potassium 
supplementation did not have an effect on eGFR com-
pared with placebo (from 79.2 ± 11.6 mL/min per 1.73 
m2 to 78.5 ± 11.7 mL/min per 1.73 m2).

Effects of sodium supplementation on bone and 
mineral parameters

Sodium supplementation increased urinary sodium 
excretion (from 105 ± 40 to 203 ± 55 mmol/24 hours, 
P < 0.001), without a change in plasma sodium. After 
4 weeks of sodium supplementation, FGF23 levels de-
creased compared with placebo (108.7 RU/mL [95% 
CI, 92.3-128.1] vs 114.3 RU/mL [95% CI, 96.2-135.8, 
P = 0.02]) (Table 2 and Fig. 3D). Plasma phosphate was 
also significantly decreased compared with placebo sup-
plementation (from 1.10 ± 0.19 to 1.06 ± 0.21 mmol/L) 
(Table  2 and Fig.  3A). Sodium supplementation did 
not significantly influence TmP/GFR, 24 hours urinary 
phosphate excretion, or fractional phosphate excretion 
(Table 2 and Fig. 3B, C). Yet, the change in FGF23 was 
positively correlated with the change in urinary (frac-
tional) phosphate excretion (rs = 0.47, P < 0.01; rs = 0.40, 
P < 0.05) and it was inversely correlated with the change 
in PTH levels (rs = –0.34, P < 0.05) (Fig. 2). Sodium sup-
plementation led to an increased urinary calcium excre-
tion (from 4.28 ± 1.91 to 5.45 ± 2.51 mmol/24 hours) 
and fractional calcium excretion (from 1.25 ± 0.50 to 
1.44 ± 0.54%) compared with placebo (Table 2) with 
a mean change of +33.9% and +21.6%, respectively 
(Table 3). Other bone and mineral parameters were not 

Table 1.  Baseline Characteristics after Run-in 
Period

Variable

Overall  
Population 

(n = 36)

Demographics
  Male, n (%) 24 (67)
  Age, y 66 ± 9
Clinical measurements
  BMI, kg/m2 27.2 ± 4.7
  Body weight, kg 85.1 ± 18.4
  Office SBP, mm Hg 133 ± 14
  Heart rate, beats/min 60 ± 7
Fasting blood parameters
  Sodium, mmol/L 143.3 ± 1.6
  Potassium, mmol/L 4.33 ± 0.34
  Total cholesterol to HDL ratio, mmol 3.9 ± 1.0
  Urea, mmol/L 5.4 ± 1.1
  Creatinine, µmol/L 81 ± 13
  eGFR, mL/min per 1.73 m2 79.4 ± 12.4
Urinary parameters
  Sodium excretion, mmol/24 h 91 ± 27
  Potassium excretion, mmol/24 h 49 ± 13
  ACR, mg/mmol 0.44 (0.30-0.63)

Abbreviations: ACR, albumin-to-creatinine ratio; BMI, body mass index; 
eGFR, estimated glomerular filtration rate; FGF23, fibroblast growth 
factor 23; HDL, high-density lipoprotein; SBP, systolic blood pressure. 
Data are presented as mean ± SD, geometric mean (95% confidence 
interval), or number (percentage).
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significantly different between sodium supplementation 
and placebo (Table 2 and Fig.  3E, F). During sodium 
supplementation, 24-hour SBP increased from 129 ± 14 
to 122 ± 15 mm Hg and 24-hour DBP increased from 
77 ± 8 to 79 ± 9 mm Hg) (31); there were no correlations 
with changes in FGF23 (Fig. 2). In response to sodium 
supplementation, eGFR increased significantly from 
79.2 ± 11.6 mL/min per 1.73 m2 to 82.7 ± 11.6 mL/min 
per 1.73 m2 (P  =  0.003) compared with placebo, but 
this change did not correlate with a change in FGF23 
(rs  = –0.07, P = NS) (Fig. 2).

Discussion

In this post hoc analysis of a randomized, placebo-
controlled crossover trial with dietary control, both 
potassium and sodium supplementation reduced 
FGF23 levels. During potassium supplementation, this 

reduction was accompanied by a concomitant increase 
of renal phosphate reabsorption and plasma phosphate 
levels, without an effect on PTH or 25(OH)-vitamin 
D3. In contrast, during sodium supplementation, the 
reduction of FGF23 was accompanied by a decrease 
of plasma phosphate. Furthermore, potassium supple-
mentation decreased fractional calcium excretion and 
sodium supplementation led to an increase of urinary 
and fraction calcium excretion. Together, these findings 
suggest that sodium and potassium intake have differ-
ential effects on mineral metabolism, even though the 
underlying mechanisms seem complex and are not fully 
elucidated by the current study.

In the original study, 4 weeks of potassium supplemen-
tation decreased blood pressure which was mitigated by 
vasopressin, stimulation of renin and aldosterone, and 
an increased heart rate (31, 36). The current study shows 
that higher potassium intake, independent of phosphate 

Figure 1.  Effect of a 4-week period of potassium supplementation in (A) healthy prehypertensive adults on plasma phosphate (P = 0.004), (B) 24 
hours urinary phosphate excretion (P = NS), and (C) TmP/GFR (P < 0.001). The rise of phosphate levels was paralleled by (D) a decrease in FGF23 
(P = 0.01), (E) without effect on PTH (P = NS) or (F) 25[OH]-vitamin D3 (P = NS). Depicted are unadjusted means and standard error, or geometric 
means and 95% confidence intervals for FGF23 and PTH. Abbreviations: FGF23, fibroblast growth factor 23; NS, not significant; TmP/GFR, tubular 
maximum reabsorption of phosphate per glomerular filtration rate.
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or protein intake, decreased FGF23 levels. This is in line 
with findings from a previous study showing that indi-
viduals consuming a potassium-poor Western diet dis-
play higher FGF23 levels, and that potassium excretion 

was inversely associated with FGF23 (25). Effects of po-
tassium on phosphate metabolism have been reported 
previously in preclinical and clinical studies. Potassium 
supplementation was shown to stimulate phosphate re-
absorption in rats (37), presumably dependent on PTH. 
Moreover, 1 study in healthy adults found that potas-
sium bicarbonate and potassium chloride changed the 
set point of phosphate reabsorption, resulting in higher 
plasma phosphate levels (38). Accordingly, in our study, 
potassium supplementation also increased TmP/GFR, 
and decreased the fractional excretion of phosphate, 
resulting in a higher plasma phosphate level, whereas 
PTH and 25(OH)-vitamin D3 remained unchanged. 
These findings suggest that potassium supplementation 
decreased plasma FGF23, resulting in increased phos-
phate reabsorption in the kidney and higher plasma 
phosphate.

The extracellular matrix in bone has a 5-fold higher 
potassium concentration compared with extracellular 
fluid, a gradient that is maintained by active transport 
mechanisms (39). We postulate that bone may serve as 
a buffer for an increase in dietary potassium intake, to 
which osteocytes may respond by reducing FGF23 pro-
duction. Future studies should address the impact of 
dietary potassium supplementation on both FGF23 and 
plasma phosphate in osteocytes, animal models, and in 
specific patient groups such as CKD patients (40). CKD 
patients are at risk for mineral bone disorders, which 
is linked to the derangements of 1,25[OH]-vitamin D3, 

Plasma 24 hrs urinary excretion/kidney function/BP

Δ Variables K+ Na+ Ca2+ P FGF23 PTH Vit. D K+ Na+ P FE P TmP/GFR Ca2+ Urea eGFR 24-h SBP 24-h DBP

Pl
as

m
a

K+ .27 .38* .41* .02 −.12 .05 −.12 .03 −.14 −.20 .40* .38* −.13 −.13 −.23 −.11

Na+ .15 .03 .14 .26 .13 −.15 .06 .13 .17 .17 −.01 −.18 −.22 −.32 −.16 −.004

Ca2+ .50** .13 .17 .09 −.14 .04 −.28 .02 −.14 −.03 .23 −.20 −.06 −.03 −.18 .04

P −.05 .03 .18 .08 −.07 .07 .03 .08 −.19 −.43** .84** −.07 −.27 .05 .33* .38*

FGF23 −.30 .24 −.21 .07 −.34* .01 −.16 −.04 .47** .40* −.05 .21 −.06 .07 .13 .09

PTH −.35* −.05 −.13 .15 −.10 −.09 .04 −.05 .06 .08 −.11 .10 −.002 .07 −.11 .08

Vit. D −.16 .07 .18 −.16 .04 −.19 −.36* −.12 −.11 −.12 .13 −.22 −.23 .23 −.28 −.28

24
 h

rs
P

B/noitcnuf
yendik/noitercxe

yraniru

K+ .04 .06 .24 −.12 .002 −.30 .38* .24 .14 −.29 .01 .23 .25 .35* .30 .22

Na+ −.10 .13 .12 .02 .47** −.21 .07 .24 −.13 −.24 .05 .85*** .28 .40* .13 −.08

P −.24 .21 −.18 −.38* .33* −.26 −.02 .43** .45** .61** −.49** .35* .51** .28 .001 −.03

FE P −.06 −.11 −.06 −.48** .26 −.02 .08 −.04 .23 .37* −.64** .21 .27 −.06 −.21 −.17

TmP/GFR −.06 .02 .15 .91** −.01 .14 −.08 −.10 −.18 −.49** −.58** −.15 −.44** −.04 .31 .44**

Ca2+ −.24 .25 .01 −.12 .34* −.03 −.09 .26 .48** .41* .11 −.19 .46** .36* .17 .13

Urea −.21 .16 .01 −.23 .23 −.29 .03 .30 .61** .65** .15 −.27 .53** .33* −.09 −.22

eGFR −.31 −.25 −.05 .20 −.50 .30 −.07 .33 .42* .35* .20 −.20 .39* .26 .25 .02

24-h SBP −.10 −.32 .22 .03 .03 .16 −.10 .03 .34* .07 0.09 −.07 .35* .23 .50** .73***

24-h DBP −.03 −.37* .42* .09 −.09 .17 .12 .03 .19 −.13 −.002 .04 .18 .09 .30 .80*

Figure 2.  Spearman’s rho correlation coefficients for changes in blood and urine parameters in response to potassium (grey shaded area, lower 
left-hand side) or sodium (white area, upper right-hand side) supplementation vs placebo. ***P < 0.001, **P < 0.01, *P < 0.05. Abbreviations: 
Ca2+, calcium; eGFR, estimated glomerular filtration rate; FEP, fractional phosphate excretion; FGF23, fibroblast growth factor 23; K+, potassium; 
Na+, sodium; P, phosphate; TmP/GFR, tubular maximum reabsorption of phosphate per glomerular filtration rate; vit. D, 25(OH)-vitamin D3.

Table 3.  Mean Percentage Change of Potassium or 
Sodium Supplementation Compared with Placebo

Mean % Change Compared  
with Placebo Potassium Sodium

Plasma
Potassium, mmol/L +3.1a −2.3a

Sodium, mmol/L −0.5a +0.3
Phosphate, mmol/L +5.5a −3.4a

Calcium, mmol/L −0.2 −0.5
FGF23, RU/mL −4.5a −4.2a

PTH, pmol/L +1.3 +2.2
25(OH)-vitamin D3, nmol/L +0.5 −2.0
Urine
Sodium excretion, mmol/24 h −20.7 +43.2a

Potassium excretion, mmol/24 h +48.6a −6.2
Phosphate excretion, mmol/24 h +6.1 +8.3
Fractional excretion of phosphate, % −7.7a +9.6
Calcium excretion, mmol/24 h −1.9 +33.9a

Fractional excretion of calcium, % −10.6a +21.6a

Urea excretion, mmol/24 h +7.9 +2.9
Other
TmP/GFR, mmol/L +10.8a −1.3
eGFR, mL/min per 1.73 m2 −0.5 +3.9a

Abbreviations: eGFR, estimated glomerular filtration rate; FGF23, fibro-
blast growth factor 23; PTH, parathyroid hormone; TmP/GFR, tubular 
maximum reabsorption of phosphate per glomerular filtration rate.
aSignificant treatment effect of potassium or sodium supplementation 
compared with placebo. 
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PTH, and FGF23 (41). FGF23 levels progressively in-
crease with declining kidney function, and patients 
with end-stage kidney disease display the highest levels 
of FGF23 (42, 43). A large number of epidemiological 
studies have linked a higher FGF23 level with adverse 
cardiovascular outcomes independent of kidney func-
tion and established cardiovascular risk factors (21, 
44). At the same time, higher potassium intake is as-
sociated with better outcomes in various populations, 
including CKD patients (7, 45, 46). In addition to redu-
cing blood pressure (47), FGF23 reduction might be an 
additional pathway, through which potassium supple-
mentation could lower the risk of adverse outcomes in 
CKD patients.

Potassium chloride or potassium bicarbonate have 
been shown to reduce urinary calcium excretion in 
some (48), but not all previous studies (27, 49–51). 
Furthermore, a recent elegant study in mice strength-
ened this observation by showing that mice receiving 
a low potassium and high sodium diet displayed an 

increased urinary calcium excretion compared to mice 
with a normal potassium and high sodium diet (52). 
The authors proposed that the effect of low potas-
sium on urinary calcium excretion is mediated by the 
thick ascending limb of Henle’s loop on top of sodium-
dependent calcium reabsorption in the proximal tu-
bule. Furthermore, potassium acts as a thiazide diuretic 
by inhibiting the sodium-chloride cotransporter in the 
distal collecting duct, which in turn also lowers calcium 
excretion (53). Another study suggested that urinary 
calcium reabsorption is influenced directly by FGF23 
(54), although the current study does not allow to draw 
a conclusion on a potential cause-effect relationship. 
Several studies have shown that supplementation of po-
tassium alkali could decrease bone resorption markers 
and increase calcium balance (27, 49). In our controlled 
diet study, we were not able to assess if the decrease of 
fractional calcium excretion could lead to an improve-
ment of bone health. However, increased urinary cal-
cium excretion might reflect lower bone density and a 

Figure 3.  Effect of a 4-week period of sodium supplementation in healthy prehypertensive adults (A) on plasma phosphate (P = 0.03), 24 
hours urinary phosphate excretion (B) (P = NS) (C) and TmP/GFR (P  = NS). The rise of phosphate levels was paralleled by (D) a decrease in FGF23 
(P = 0.02), (E) without effect on PTH (P = NS) or (F) 25[OH]-vitamin D3 (P = NS). Depicted are unadjusted means and standard error, or geometric 
means and 95% confidence intervals for FGF23 and PTH. Abbreviations: FGF23, fibroblast growth factor 23; TmP/GFR, tubular maximum 
reabsorption of phosphate per glomerular filtration rate.
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higher risk of fractures (55). Also, in some studies, high 
FGF23 has been associated with poor bone health (56, 
57), whereas high dietary potassium intake has been as-
sociated with improved bone health (27, 28).

To our knowledge, 2 previous studies addressed the 
effect of sodium interventions on FGF23. We previ-
ously found no effect of low sodium intake on FGF23 
in patients with CKD, and also no effect of saline infu-
sion in patients with hypertension (58). On the other 
hand, in a study in healthy adults, high salt intake 
decreased FGF23, whereas other bone and mineral 
parameters were not investigated in that study (59). In 
the current study, we found that sodium supplemen-
tation decreased FGF23 levels, which was not accom-
panied by a change in fractional phosphate excretion 
or TmP/GFR. In contrast with the effect of potassium, 
sodium supplementation led to a decrease in plasma 
phosphate, suggesting a different sequence of events. 
Sodium supplementation could lead to lower plasma 
phosphate through an increase in extracellular fluid 
volume (60), as supported by the observed increased in 
volume markers (36). The lower FGF23 levels during 
sodium supplementation may be secondary to lower 
plasma phosphate, reflecting an attempt to retain 
phosphate to maintain phosphate balance (14). A com-
prehensive study in mice showed that FGF23 directly 
regulates sodium homeostasis by increasing sodium-
chloride cotransporter membrane abundance in the 
distal convoluted tubule, suggesting cross-talk between 
FGF23 and sodium homeostasis (61). As an alternative 
explanation, in the current study, sodium supplemen-
tation increased blood pressure and increased eGFR 
(31). This might also explain the decline in FGF23 
(62), although we could not demonstrate a significant 
association between the change in FGF23 and change 
in 24-hour blood pressure or eGFR during either inter-
vention (Fig. 2).

Our finding that sodium supplementation strongly in-
duces hypercalciuria is well in line with several previous 
studies, also showing that high sodium intake contrib-
utes to the development and progression of osteoporosis 
and kidney stones (55, 63, 64). In clinical practice, low 
salt intake is recommended to lower the risk of recur-
ring calcium-containing kidney stones (65).

Strengths of this study include the 90% controlled 
diet and the double-blinded placebo-controlled de-
sign of the original study, as well as the crossover 
design that increased statistical power. In this highly 
controlled diet setting, introduction of a single min-
eral could affect the bone and mineral parameters, 
suggesting that the effect is indeed induced by that 
mineral. Limitations of this study include the limited 

sample size and the relatively short follow-up. The 
study did not include a washout period between the 
interventions and, although limited data are avail-
able about lasting effects of potassium or sodium on 
bone and mineral parameters, carryover effect could 
not be excluded. Of note, baseline urinary potassium 
and sodium excretion is lower than urinary potas-
sium and sodium excretion during the placebo period. 
Still, during the potassium or sodium supplementa-
tion period, a significant difference with the placebo 
period was observed in urinary potassium and so-
dium excretion, respectively, indicating that the effect 
of potassium and sodium supplementation is higher 
compared with placebo supplementation. This study 
was conducted on otherwise healthy prehypertensive 
adults and the observed results cannot be extrapo-
lated to other patient populations. Finally, we did not 
have data on active vitamin D (1,25(OH)-vitamin D3), 
which might have elucidated some of the mechanisms 
driving our results.

In conclusion, we demonstrate in a post hoc ana-
lysis of a dietary controlled trial that potassium and 
sodium supplementation specifically influence calcium-
phosphate metabolism, among others, by influencing 
FGF23. The interpretation of the interplay between so-
dium, potassium, and calcium-phosphate homeostasis 
remains highly complex. Our results provide a basis to 
further study the clinical impact of these interactions 
in specific patient populations in which potassium and 
mineral metabolism are deregulated, including patients 
with CKD.
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