18 research outputs found

    Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis

    Get PDF
    Photo-unstable chemicals sometimes behave as phototoxins in skin, inducing untoward clinical side-effects when exposed to sunlight. Some drugs, such as psoralens or fluoroquinolones, can damage genomic DNA, thus increasing the risk of photocarcinogenesis. Here, lomefloxacin, an antibiotic from the fluoroquinolone family known to be involved in skin tumor development in photoexposed mice, was studied using normal human skin cells in culture: fibroblasts, keratinocytes, and Caucasian melanocytes. When treated cells were exposed to simulated solar ultraviolet A (320–400 nm), lomefloxacin induced damage such as strand breaks and pyrimidine dimers in genomic DNA. Lomefloxacin also triggered various stress responses: heme-oxygenase-1 expression in fibroblasts, changes in p53 status as shown by the accumulation of p53 and p21 proteins or the induction of MDM2 and GADD45 genes, and stimulation of melanogenesis by increasing the tyrosinase activity in melanocytes. Lomefloxacin could also lead to apoptosis in keratinocytes exposed to ultraviolet A: caspase-3 was activated and FAS-L gene was induced. Moreover, keratinocytes were shown to be the most sensitive cell type to lomefloxacin phototoxic effects, in spite of the well-established effectiveness of their antioxidant equipment. These data show that the phototoxicity of a given drug can be driven by different mechanisms and that its biologic impact varies according to cell type

    Preferential binding of a G-quadruplex ligand to human chromosome ends

    Get PDF
    The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, (3)H-360A (2,6-N,N′-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-(3)H]. We verified the in vitro selectivity of (3)H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that (3)H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3′-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with (3)H-360A. We found that (3)H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells

    Differential Repair of the Two Major UV-Induced Photolesions in Trichothiodystrophy Fibroblasts

    No full text
    International audienceDefects in nucleotide excision repair have been shown to be associated with the photosensitive form of the disorder trichothiodystrophy (TTD). Most repair-deficient TTD patients are mutated in the XPD gene, a subunit of the transcription factor TFIIH. Knowledge of the kinetics and efficiency of repair of the two major UV-induced photolesions in TTD is critical to understand the role of unrepaired lesions in the process of carcinogenesis and explain the absence of enhanced skin cancer incidence in TTD patients contrarily to the xeroderma pigmentosum D patients. In this study, we used different approaches to quantify repair of UV-induced cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP) at the gene and the genome overall level. In cells of two TTD patients, repair of CPD and 6–4PP was reduced compared with normal human cells, but the reduction was more severe in confluent cells than in exponentially growing cells. Moreover, the impairment of repair was more drastic for CPD than 6–4PP. Most notably, exponentially growing TTD cells displayed complete repair 6–4PP over a broad dose range, albeit at a reduced rate compared with normal cells. Strand-specific analysis of CPD repair in a transcriptional active gene revealed that TTD cells were capable to perform transcription-coupled repair. Taken together, the data suggest that efficient repair of 6–4PP in dividing TTD cells in concert with transcription-coupled repair might account for the absence of increased skin carcinogenesis in TTD patients

    Stage-specificity of spontaneous mutation at a tandem repeat DNA locus in the mouse germline

    Full text link
    Stage-specificity of spontaneous mutation at a tandem repeat DNA locus in the mouse germlin

    Spermatogonial stem cells and progenitors are refractory to reprogramming to pluripotency by the transcription factors Oct3/4, c-Myc, Sox2 and Klf4.

    No full text
    International audienceThe male germinal lineage, which is defined as unipotent, produces sperm through spermatogenesis. However, embryonic primordial germ cells and postnatal spermatogonial stem cells (SSCs) can change their fate and convert to pluripotency in culture when they are not controlled by the testicular microenvironment. The mechanisms underlying these reprogramming processes are poorly understood. Testicular germ cell tumors, including teratoma, share some molecular characteristics with pluripotent cells, suggesting that cancer could result from an abnormal differentiation of primordial germ cells or from an abnormal conversion of SSCs to pluripotency in the testis. Here, we investigated whether the somatic reprogramming factors Oct3/4, Sox2, Klf4 and c-Myc (OSKM) could play a role in SSCs reprogramming and induce pluripotency using a doxycycline-inducible transgenic Col1a1-4F2A-OSKM mouse model. We showed that, in contrast to somatic cells, SSCs from adult mice are resistant to this reprogramming strategy, even in combination with small molecules, hypoxia, or p53 deficiency, which were previously described to favour the conversion of somatic cells to pluripotency. This finding suggests that adult SSCs have developed specific mechanisms to repress reprogramming by OSKM factors, contributing to circumvent testicular cancer initiation events

    The relative expression of mutated XPB genes results in xeroderma pigmentosum/Cockayne's syndrome or trichothiodystrophy cellular phenotypes

    No full text
    International audienceThe human XPB DNA helicase is a subunit of the DNA repair/basal transcription factor TFIIH, involved in early steps of the nucleotide excision repair pathway. Two distinct clinical phenotypes, xeroderma pigmentosum associated with Cockayne's syndrome (XP/CS) and trichothiodystrophy (TTD), can be due to mutations in the XPB gene. In the present work, we studied cellular DNA repair properties of skin fibro-blasts from two patients mutated in the XPB gene: an XP/CS patient cell (XPCS2BA) with a T296C (F99S) transition and a TTD patient cell (TTD6VI) exhibiting an A355C (T119P) transversion. Both cells are clearly associated with different levels of alterations in their response to UV light. To establish the relationship between the relative expression level of these two alleles and DNA repair properties, we transfected SV40-transformed XPCS2BA (XPCS2BASV) cells with a plasmid (pTTD6VI) carrying the XPB-A355C cDNA and examined DNA repair properties after UV irradiation (cell survival, unscheduled DNA synthesis and kinetics of photoproduct removal) in stable transfectants. We isolated three clones, which express the XPB-A355C gene (Cl-5) or the XPB-T296C gene (Cl-14) or both genes (Cl-19). This con-stitutes a model system allowing us to correlate the relative expression levels of the XPB-A355C (TTD) and XPB-T296C (XP/CS) genes with various DNA repair properties. Overexpression of the XPB-A355C (TTD) gene in an XP/CS cell gives rise to a cellular phenotype of increased repair similar to that of TTD6VI cells, while equal expression of the two mutated genes leads to an intermediate cellular phenotype between XP/CS and TTD

    Mouse differentiating spermatogonia can generate germinal stem cells in vivo.

    No full text
    International audienceIn adults, stem cells are responsible for the maintenance of many actively renewing tissues, such as haematopoietic, skin, gut and germinal tissues. These stem cells can self-renew or be committed to becoming progenitors. Stem-cell commitment is thought to be irreversible but in male and female Drosophila melanogaster, it was shown recently that differentiating germ cells can revert to functional stem cells that can restore germinal lineage. Whether progenitors are also able to generate stem cells in mammals remains unknown. Here we show that purified mouse spermatogonial progenitors committed to differentiation can generate functional germinal stem cells that can repopulate germ-cell-depleted testes when transplanted into adult mice. We found that GDNF, a key regulator of the stem-cell niche, and FGF2 are able to reprogram in vitro spermatogonial progenitors for reverse differentiation. This study supports the emerging concept that the stem-cell identity is not restricted in adults to a definite pool of cells that self-renew, but that stemness could be acquired by differentiating progenitors after tissue injury and throughout life
    corecore