8,903 research outputs found

    Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

    Full text link
    In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to H\"older continuous potentials.Comment: 33 pages, 6 figure

    Levy-Nearest-Neighbors Bak-Sneppen Model

    Full text link
    We study a random neighbor version of the Bak-Sneppen model, where "nearest neighbors" are chosen according to a probability distribution decaying as a power-law of the distance from the active site, P(x) \sim |x-x_{ac }|^{-\omega}. All the exponents characterizing the self-organized critical state of this model depend on the exponent \omega. As \omega tends to 1 we recover the usual random nearest neighbor version of the model. The pattern of results obtained for a range of values of \omega is also compatible with the results of simulations of the original BS model in high dimensions. Moreover, our results suggest a critical dimension d_c=6 for the Bak-Sneppen model, in contrast with previous claims.Comment: To appear on Phys. Rev. E, Rapid Communication

    Genetic Characterization of Prairie Grass (\u3cem\u3eBromus Catharticus\u3c/em\u3e Vahl.) Natural Populations

    Get PDF
    Prairie grass, Bromus catharticus Vahl., is a winter annual or biennial grass, native of South America which is widely distributed in the Pampeana area of Argentina and also cultivated in temperate regions of the world. Morphophysiological traits are currently used to assess the variability from natural populations and cultivars of this species. Molecular markers, which are not influenced by the environment, allow a more accurate assessment of genetic variability. Previous results from our group (Puecher et al., 2001a) showed a narrow genetic basis for the prairie grass cultivars used in Argentina. On the other hand, we also observed that natural populations of this species collected in the typical area where prairie grass is cultivated in Argentina, showed a RAPD variability pattern similar to that previously observed for cultivars (Puecher et al., 2001b). The objective of this work was to establish, using RAPDs, the genetic relationships among prairie grass natural populations including accessions from the margins of the cultivation area of this species in Argentina

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.

    On the High-dimensional Bak-Sneppen model

    Full text link
    We report on extensive numerical simulations on the Bak-Sneppen model in high dimensions. We uncover a very rich behavior as a function of dimensionality. For d>2 the avalanche cluster becomes fractal and for d \ge 4 the process becomes transient. Finally the exponents reach their mean field values for d=d_c=8, which is then the upper critical dimension of the Bak Sneppen model.Comment: 4 pages, 3 eps figure

    Low-energy excitations of a linearly Jahn-Teller coupled orbital quintet

    Full text link
    The low-energy spectra of the single-mode h x (G+H) linear Jahn-Teller model is studied by means of exact diagonalization. Both eigenenergies and photoemission spectral intensities are computed. These spectra are useful to understand the vibronic dynamics of icosahedral clusters with partly filled orbital quintet molecular shells, for example C60 positive ions.Comment: 14 pages revte
    corecore