3 research outputs found

    Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses

    Get PDF
    Background: Subendothelial deposited low-density lipoprotein particles are a known inflammatory factor in atherosclerosis. However, the causal components derived from low-density lipoprotein are still poorly defined. Apolipoprotein B100 (ApoB100) is the unexchangeable protein component of low-density lipoprotein, and the progression of atherosclerosis is associated with immune responses to ApoB100-derived peptides. In this study, we analyzed the proinflammatory activity of ApoB100 peptides in atherosclerosis. Methods and Results: By screening a peptide library of ApoB100, we identified a distinct native peptide referred to as ApoB100 danger-associated signal 1 (ApoBDS-1), which shows sequence-specific bioactivity in stimulation of interleukin-8, CCL2, and interleukin-6. ApoBDS-1 activates mitogen-activated protein kinase and calcium signaling, thereby effecting the expression of interleukin-8 in innate immune cells. Ex vivo stimulation of carotid plaques with ApoBDS-1 enhances interleukin-8 and prostaglandin E2 release. Furthermore, we demonstrated that ApoBDS-1–positive peptide fragments are present in atherosclerotic lesions using immunoassays and that low-molecular-weight fractions isolated from plaque show ApoBDS-1 activity inducing interleukin-8 production. Conclusions: Our data show that ApoBDS-1 is a previously unrecognized peptide with robust proinflammatory activity, contributing to the disease-promoting effects of low-density lipoprotein in the pathogenesis of atherosclerosis. (Circulation. 2011;124:2433-2443.)Swedish Heart-Lung FoundationSwedish Foundation for Strategic ResearchSwedish Research CouncilCenter of Excellence for Research on Inflammation and Cardiovascular Disease Linnaeus ProgramLeducq FoundationEuropean UnionChina Scholarship Council.Publishe

    O Conflito Político. Alguns Aspectos da sua Modelação

    Get PDF
    Objective: Sports practice alters the homeostasis of athletes. To achieve homeostatic equilibrium, the integrated action of the neuroendocrine and immune systems is necessary. Here we studied the relation between cytokines, hormones and mood states in marathon runners. Methods: A total of 20 male recreational marathon runners (mean age = 35.7 ± 9 years) and 20 male sedentary individuals (mean age = 35.5 ± 7 years) were recruited. We compared the serum levels of growth hormone (GH), cortisol and interleukins 8 and 10 and the amounts of these two cytokines spontaneously produced by peripheral blood mononuclear cells. Blood samples of the sedentary group were collected at rest. Blood from the marathon runners was collected at rest (baseline: 24 h before the race), immediately after a marathon and 72 h after a marathon. Mood state analysis in both groups was performed using the 24-item Brunel Mood Scale (BRUMS). Results: Our results showed that, at rest, levels of interleukins 8 and 10 in the supernatant of culture cells, the serum concentration of GH, and tension and vigour (evaluated using the BRUMS), were significantly higher in athletes compared to sedentary people. Immediately after the race all serum parameters analysed were statistically higher than baseline values. At 72 h after the marathon, serum levels of hormones and interleukins returned to values at rest, but the concentrations of interleukins in the supernatant of culture cells showed a significant reduction compared to values at rest. Conclusion: The higher serum levels of GH in athletes at rest and the higher production of cytokines in culture without previous stimulus suggest that marathon runners present mechanisms that may be associated with preparing the body to perform prolonged strenuous exercise, such as a marathon

    Neuro-immuno-endocrine modulation in marathon runners

    No full text
    Objective: Sports practice alters the homeostasis of athletes. To achieve homeostatic equilibrium, the integrated action of the neuroendocrine and immune systems is necessary. Here we studied the relation between cytokines, hormones and mood states in marathon runners. Methods: A total of 20 male recreational marathon runners (mean age = 35.7 ± 9 years) and 20 male sedentary individuals (mean age = 35.5 ± 7 years) were recruited. We compared the serum levels of growth hormone (GH), cortisol and interleukins 8 and 10 and the amounts of these two cytokines spontaneously produced by peripheral blood mononuclear cells. Blood samples of the sedentary group were collected at rest. Blood from the marathon runners was collected at rest (baseline: 24 h before the race), immediately after a marathon and 72 h after a marathon. Mood state analysis in both groups was performed using the 24-item Brunel Mood Scale (BRUMS). Results: Our results showed that, at rest, levels of interleukins 8 and 10 in the supernatant of culture cells, the serum concentration of GH, and tension and vigour (evaluated using the BRUMS), were significantly higher in athletes compared to sedentary people. Immediately after the race all serum parameters analysed were statistically higher than baseline values. At 72 h after the marathon, serum levels of hormones and interleukins returned to values at rest, but the concentrations of interleukins in the supernatant of culture cells showed a significant reduction compared to values at rest. Conclusion: The higher serum levels of GH in athletes at rest and the higher production of cytokines in culture without previous stimulus suggest that marathon runners present mechanisms that may be associated with preparing the body to perform prolonged strenuous exercise, such as a marathon
    corecore