351 research outputs found
Protocol Requirements for Self-organizing Artifacts: Towards an Ambient Intelligence
We discuss which properties common-use artifacts should have to collaborate
without human intervention. We conceive how devices, such as mobile phones,
PDAs, and home appliances, could be seamlessly integrated to provide an
"ambient intelligence" that responds to the user's desires without requiring
explicit programming or commands. While the hardware and software technology to
build such systems already exists, as yet there is no standard protocol that
can learn new meanings. We propose the first steps in the development of such a
protocol, which would need to be adaptive, extensible, and open to the
community, while promoting self-organization. We argue that devices,
interacting through "game-like" moves, can learn to agree about how to
communicate, with whom to cooperate, and how to delegate and coordinate
specialized tasks. Thus, they may evolve a distributed cognition or collective
intelligence capable of tackling complex tasks.Comment: To be presented at 5th International Conference on Complex System
The implications of alternative developer decision-making strategies on land-use and land-cover in an agent-based land market model
Land developers play a key role in land-use and land cover change, as\ud
they directly make land development decisions and bridge the land and housing\ud
markets. Developers choose and purchase land from rural land owners, develop\ud
and subdivide land into parcel lots, build structures on lots, and sell houses to residential households. Developers determine the initial landscaping states of developed parcels, affecting the state and future trajectories of residential land cover, as well as land market activity. Despite their importance, developers are underrepresented in land use change models due to paucity of data and knowledge regarding their decision-making. Drawing on economic theories and empirical literature, we have developed a generalized model of land development decision-making within a broader agent-based model of land-use change via land markets. Developer’s strategies combine their specialty in developing of particular subdivision types, their perception of and attitude towards market uncertainty, and their learning and adaptation strategies based on the dynamics of the simulated land and housing markets. We present a new agent-based land market model that includes these elements. The model will be used to experiment with these different development decision-making methods and compare their impacts on model outputs, particularly on the quantity and spatial pattern of resultant land use changes. Coupling between the land market and a carbon sequestration model, developed for the larger SLUCE2 project, will allow us, in future work, to examine how different developer’s strategies will affect the carbon balance in residential\ud
landscape
The Role of Biomarkers, Metabolomics, and COVID-19 in Venous Thromboembolism—A Review of Literature
In recent years, the field of venous thromboembolism has undergone numerous innovations, starting from the recent discoveries on the role of biomarkers, passing through the role of metabolomics in expanding our knowledge on pathogenic mechanisms, which have opened up new therapeutic targets. A variety of studies have contributed to characterizing the metabolic phenotype that occurs in venous thromboembolism, identifying numerous pathways that are altered in this setting. Among these pathways are the metabolism of carnitine, tryptophan, purine, and fatty acids. Furthermore, new evidence has emerged with the recent COVID-19 pandemic. Hypercoagulability phenomena induced by this viral infection appear to be related to altered von Willebrand factor activity, alteration of the renin-angiotensin-aldosterone system, and dysregulation of both innate and adaptive immunity. This is the first literature review that brings together the most recent evidence regarding biomarkers, metabolomics, and COVID-19 in the field of venous thromboembolism, while also mentioning current therapeutic protocols
Case report: De novo mutation of a-galactosidase A in a female patient with end-stage renal disease: report of a case of late diagnosis of Anderson–Fabry disease
Background: Anderson-Fabry disease (AFD) is an X-linked disease that results from reduced activity of the enzyme galactosidase alpha (GLA). When the GLA gene sequence is altered by mutations that alter the normal DNA sequence, variants of the alpha-galactosidase A enzyme are produced, which may or may not function. These mutations are responsible for Fabry disease, and to date, over 800 different mutations of the gene have been described in patients with Anderson-Fabry disease. In this case, we report the case of a woman who is the sole family member with this type of mutation.Case presentation: We report a case of a 52-year-old woman with end-stage chronic kidney disease in dialysis treatment. The patient's alpha-galactosidase activity was 6.6 nmol/ml/h in whole blood, and lyso-GB3 levels were 11.45 nmol/L (normal range < 2.3 nmol/L). Alpha-galactosidase A gene sequence analysis revealed a pathogenic variant of c.947dupT in exon 6, leading to the p. I317NfsTer16 amino acid substitution. The genetic analysis did not detect the same mutation in any of the other screened family members.Conclusion: The international Fabry disease genotype-phenotype database (dbFGP) reports a pathogenic variant c.947dupT in exon 6 that is probably associated with a classical phenotype of Fabry disease. In this case report, we report the case of a woman who is the sole family member with this type of pathogenic variant. Similar situations have not been described in the literature for this pathogenic variant, and it represents an important case of inter- and intrafamilial variability in patients with Fabry disease. The literature shows that de novo pathogenic variants are frequently found in the context of Fabry disease
Pathogenesis and molecular mechanisms of anderson–fabry disease and possible new molecular addressed therapeutic strategies
Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approxi-mately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson–Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a signif-icant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the au-tophagy–lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal oc-clusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-de-pendent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibro-blasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in ad-dition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy
Effects of land markets and land management on ecosystem function: A framework for modelling exurban land-change
This paper presents the conceptual design and application of a new land-change modelling framework that represents geographical, sociological, economic, and ecological aspects of a land system. The framework provides an overarching design that can be extended into specific model implementations to evaluate how policy, land-management preferences, and land-market dynamics affect (and are affected by) land-use and land-cover change patterns and subsequent carbon storage and flux. To demonstrate the framework, we implement a simple integration of a new agent-based model of exurban residential development and land-management decisions with the ecosystem process model BIOME-BGC. Using a stylized scenario, we evaluate the influence of different exurban residential-land-management strategies on carbon storage at the parcel level over a 48-year period from 1958 to 2005, simulating stocks of carbon in soil, litter, vegetation, and net primary productivity. Results show 1) residential parcels with management practices that only provided additions in the form of fertilizer and irrigation to turfgrass stored slightly more carbon than parcels that did not include management practices, 2) conducting no land-management strategy stored more carbon than implementing a strategy that included removals in the form of removing coarse woody debris from dense tree cover and litter from turfgrass, and 3) the removal practices modelled had a larger impact on total parcel carbon storage than our modelled additions. The degree of variation within the evaluated land-management practices was approximately 42,104 kg C storage on a 1.62 ha plot after 48 years, demonstrating the substantial effect that residential land-management practices can have on carbon storag
Imprecision and bias in orthodontic treatment results
Imprecision in treatment response has been defined as inconsistent unpredictable results from the same treatment. Bias has been defined as systematic failure to achieve defined treatment goals. Concepts of imprecision and bias are applied to the results of a study of soft-tissue response to Class II treatment with edgewise and Herbst appliances.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27413/1/0000448.pd
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
- …