37 research outputs found

    Distinct phosphorylation signals drive acceptor versus free ubiquitin chain targeting by Parkin

    Get PDF
    The RBR E3 ligase parkin is recruited to the outer mitochondrial membrane (OMM) during oxidative stress where it becomes activated and ubiquitinates numerous proteins. Parkin activation involves binding of a phosphorylated ubiquitin (pUb), followed by phosphorylation of the Ubl domain in parkin, both mediated by the OMM kinase, PINK1. How an OMM protein is selected for ubiquitination is unclear. Parkin targeted OMM proteins have little structural or sequence similarity, with the commonality between substrates being proximity to the OMM. Here, we used chimeric proteins, tagged with ubiquitin (Ub), to evaluate parkin ubiquitination of mitochondrial substrates. We find that pUb tethered to the mitochondrial target proteins, Miro1 or CISD1, is necessary for parkin recruitment and essential for target protein ubiquitination. Surprisingly, phosphorylation of parkin is not necessary for the ubiquitination of either Miro1 or CISD1. Thus, parkin lacking its Ubl domain efficiently ubiquitinates a substrate tethered to pUb. Instead, phosphorylated parkin appears to stimulate free Ub-chain formation. We also demonstrate that parkin ubiquitination of pUb-tethered substrates occurs on the substrate, rather than the pUb modification. We propose divergent parkin mechanisms whereby parkin-mediated ubiquitination of acceptor proteins is driven by binding to pre-existing pUb on the OMM protein and subsequent parkin phosphorylation triggers free Ub chain formation. This finding accounts for the broad spectrum of OMM proteins ubiquitinated by parkin and has implications on target design for therapeutics

    Design of High-affinity S100-target Hybrid Proteins

    No full text
    S100B and S100A10 are dimeric, EF-hand proteins. S100B undergoes a calcium-dependent conformational change allowing it to interact with a short contiguous sequence from the actin-capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N-terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100-target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1-15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by (1)H-(15)N HSQC spectra showed the linker did not perturb the structures of the S100A10-annexin A2 or S100B-TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments ((1)H, (15)N, and (13)C) showed that residues T102-S108 of annexin A2 formed a well-defined alpha-helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N-terminus with a single turn of alpha-helix from D108-K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes

    Identification of Regions Responsible for the Open Conformation of S100A10 Using Chimaeric S100A11-S100A10 Proteins

    No full text
    S100A11 is a dimeric EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2) and facilitate membrane vesiculation events. In contrast with other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an \u27open\u27 conformation that is very similar to S100A11 in its calcium-bound state. To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimaeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimaeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by bis-ANS (4,4\u27-dianilino-1,1\u27-binaphthyl-5,5\u27disulfonic acid, dipotassium salt) fluorescence and phenyl-Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimaeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target binding site. In contrast, S100A11 chimaeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and, consequently, unobservable annexin A2 binding. The present study represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10
    corecore