375 research outputs found

    In-trap conversion electron spectroscopy

    Get PDF
    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future

    Penning trap at IGISOL

    Get PDF

    Isomeric states close to doubly magic 132^{132}Sn studied with JYFLTRAP

    Full text link
    The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for 11/2−11/2^- isomers in 121^{121}Cd, 123^{123}Cd, 125^{125}Cd and 133^{133}Te, for 1/2−1/2^- isomers in 129^{129}In and 131^{131}In, and for 7−7^- isomers in 130^{130}Sn and 134^{134}Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to 132^{132}Sn. A new excitation energy of 144(4) keV has been determined for 123^{123}Cdm^m. A good agreement with the precisely known excitation energies of 121^{121}Cdm^m, 130^{130}Snm^m, and 134^{134}Sbm^m has been found.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Precision mass measurements of radioactive nuclei at JYFLTRAP

    Get PDF
    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.Comment: 4 pages and 4 figures, RNB7 conf. pro

    Q-value of the superallowed beta decay of Ga-62

    Full text link
    Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.Comment: 12 pages, 3 figures, 2 tables, submitted to Phys. Lett. B. v2: added acknowledgement

    Characterization of a Be(p,xn) neutron source for fission yields measurements

    Full text link
    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\"askyl\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.Comment: 3 pages, 3 figures, also submitted as proceedings of the International Conference on Nuclear Data for Science and Technology 201

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164−166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter
    • 

    corecore