1,687 research outputs found
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Explicit solution of the linearized Einstein equations in TT gauge for all multipoles
We write out the explicit form of the metric for a linearized gravitational
wave in the transverse-traceless gauge for any multipole, thus generalizing the
well-known quadrupole solution of Teukolsky. The solution is derived using the
generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to
appear in Class. Quantum Gra
Simple, stable, and affordable : Towards long-term ecosystem scale flux measurements of VOCs
Non peer reviewe
An axisymmetric evolution code for the Einstein equations on hyperboloidal slices
We present the first stable dynamical numerical evolutions of the Einstein
equations in terms of a conformally rescaled metric on hyperboloidal
hypersurfaces extending to future null infinity. Axisymmetry is imposed in
order to reduce the computational cost. The formulation is based on an earlier
axisymmetric evolution scheme, adapted to time slices of constant mean
curvature. Ideas from a previous study by Moncrief and the author are applied
in order to regularize the formally singular evolution equations at future null
infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime
are obtained, including a gravitational perturbation. The Bondi news function
is evaluated at future null infinity.Comment: 21 pages, 4 figures. Minor additions, updated to agree with journal
versio
Lag time determination in DEC measurements with PTR-MS
The disjunct eddy covariance (DEC) method has emerged as a popular technique for micrometeorological flux measurements of volatile organic compounds (VOCs). It has usually been combined with proton transfer reaction mass spectrometry (PTR-MS), an online technique for VOC concentration measurements. However, the determination of the lag time between wind and concentration measurements has remained an important challenge. To address this issue, we studied the effect of different lag time methods on DEC fluxes. The analysis was based on both actual DEC measurements with PTR-MS and simulated DEC data derived from high frequency H<sub>2</sub>O measurements with an infrared gas analyzer. Conventional eddy covariance fluxes of H<sub>2</sub>O served as a reference in the DEC simulation. The individual flux measurements with PTR-MS were rather sensitive to the lag time methods, but typically this effect averaged out when the median fluxes were considered. The DEC simulation revealed that the maximum covariance method was prone to overestimation of the absolute values of fluxes. The constant lag time methods, one based on a value calculated from the sampling flow and the sampling line dimensions and the other on a typical daytime value, had a tendency to underestimate. The visual assessment method and our new averaging approach utilizing running averaged covariance functions did not yield statistically significant errors and thus fared better than the habitual choice, the maximum covariance method. Given this feature and the potential for automatic flux calculation, we recommend using the averaging approach in DEC measurements with PTR-MS. It also seems well suited to conventional eddy covariance applications when measuring fluxes near the detection limit
Testing outer boundary treatments for the Einstein equations
Various methods of treating outer boundaries in numerical relativity are
compared using a simple test problem: a Schwarzschild black hole with an
outgoing gravitational wave perturbation. Numerical solutions computed using
different boundary treatments are compared to a `reference' numerical solution
obtained by placing the outer boundary at a very large radius. For each
boundary treatment, the full solutions including constraint violations and
extracted gravitational waves are compared to those of the reference solution,
thereby assessing the reflections caused by the artificial boundary. These
tests use a first-order generalized harmonic formulation of the Einstein
equations. Constraint-preserving boundary conditions for this system are
reviewed, and an improved boundary condition on the gauge degrees of freedom is
presented. Alternate boundary conditions evaluated here include freezing the
incoming characteristic fields, Sommerfeld boundary conditions, and the
constraint-preserving boundary conditions of Kreiss and Winicour. Rather
different approaches to boundary treatments, such as sponge layers and spatial
compactification, are also tested. Overall the best treatment found here
combines boundary conditions that preserve the constraints, freeze the
Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class.
Quantum Gra
Structure alignment based on coding of local geometric measures
BACKGROUND: A structure alignment method based on a local geometric property is presented and its performance is tested in pairwise and multiple structure alignments. In this approach, the writhing number, a quantity originating from integral formulas of Vassiliev knot invariants, is used as a local geometric measure. This measure is used in a sliding window to calculate the local writhe down the length of the protein chain. By encoding the distribution of writhing numbers across all the structures in the protein databank (PDB), protein geometries are represented in a 20-letter alphabet. This encoding transforms the structure alignment problem into a sequence alignment problem and allows the well-established algorithms of sequence alignment to be employed. Such geometric alignments offer distinct advantages over structural alignments in Cartesian coordinates as it better handles structural subtleties associated with slight twists and bends that distort one structure relative to another. RESULTS: The performance of programs for pairwise local alignment (TLOCAL) and multiple alignment (TCLUSTALW) are readily adapted from existing code for Smith-Waterman pairwise alignment and for multiple sequence alignment using CLUSTALW. The alignment algorithms employed a blocked scoring matrix (TBLOSUM) generated using the frequency of changes in the geometric alphabet of a block of protein structures. TLOCAL was tested on a set of 10 difficult proteins and found to give high quality alignments that compare favorably to those generated by existing pairwise alignment programs. A set of protein comparison involving hinged structures was also analyzed and TLOCAL was seen to compare favorably to other alignment methods. TCLUSTALW was tested on a family of protein kinases and reveal conserved regions similar to those previously identified by a hand alignment. CONCLUSION: These results show that the encoding of the writhing number as a geometric measure allow high quality structure alignments to be generated using standard algorithms of sequence alignment. This approach provides computationally efficient algorithms that allow fast database searching and multiple structure alignment. Because the geometric measure can employ different window sizes, the method allows the exploration of alignments on different, well-defined length scales
Axisymmetric evolution of Einstein equations and mass conservation
For axisymmetric evolution of isolated systems, we prove that there exists a
gauge such that the total mass can be written as a positive definite integral
on the spacelike hypersurfaces of the foliation and the integral is constant
along the evolution. The conserved mass integral controls the square of the
extrinsic curvature and the square of first derivatives of the intrinsic
metric. We also discuss applications of this result for the global existence
problem in axial symmetry.Comment: A mistake in the proof of Lemma 5.1 is corrected. This version
includes the Corrigendum that appears in Class. Quantum Grav. 26 (2009)
12980
- …