78 research outputs found

    Activations of Human Auditory Cortex During Visual and Auditory Selective Attention Tasks with Varying Difficulty

    Get PDF
    The present study was designed to directly test the hypothesis that suppression of activations to task-irrelevant sounds contributes to the attention-related modulations of auditory cortex (AC) activations observed in previous fMRI studies. Subjects selectively attended to auditory (broadband noise bursts with pitch) or visual (Gabor gratings) asynchronous fast-rate stimulus streams concurrently presented to left-ear, right-ear, above-fixation, or below-fixation. Auditory and visual task difficulty was parametrically manipulated in three levels. Behavioral data obtained during fMRI indicated that subjects achieved acceptable performance levels in all tasks and that the task-difficulty manipulation was effective. Consistent with previous studies, AC activations strongly depended on the direction of attention. AC activations to sounds were higher during auditory than during visual tasks and AC activations were higher in the hemisphere contralateral to the attended ear. However, the effects of task difficulty on AC activations were weak or non-existent. In particular, increasing task difficulty was not associated with a systematic decrease of AC activations in areas that were modulated by attention. These results suggest that suppression of AC activations to task-irrelevant sounds is likely to be small or negligible as compared with the strong activation enhancements observed in fMRI during active auditory tasks

    Interaction of the effects associated with auditory-motor integration and attention-engaging listening tasks

    Get PDF
    A number of previous studies have implicated regions in posterior auditory cortex (AC) in auditory-motor integration during speech production. Other studies, in turn, have shown that activation in AC and adjacent regions in the inferior parietal lobule (IPL) is strongly modulated during active listening and depends on task requirements. The present fMRI study investigated whether auditory-motor effects interact with those related to active listening tasks in AC and IPL. In separate task blocks, our subjects performed either auditory discrimination or 2-back memory tasks on phonemic or nonphonemic vowels. They responded to targets by either overtly repeating the last vowel of a target pair, overtly producing a given response vowel, or by pressing a response button. We hypothesized that the requirements for auditory-motor integration, and the associated activation, would be stronger during repetition than production responses and during repetition of nonphonemic than phonemic vowels. We also hypothesized that if auditory-motor effects are independent of task-dependent modulations, then the auditory-motor effects should not differ during discrimination and 2-back tasks. We found that activation in AC and IPL was significantly modulated by task (discrimination vs. 2-back), vocal-response type (repetition vs. production), and motor-response type (vocal vs. button). Motor-response and task effects interacted in IPL but not in AC. Overall, the results support the view that regions in posterior AC are important in auditory-motor integration. However, the present study shows that activation in wide AC and IPL regions is modulated by the motor requirements of active listening tasks in a more general manner. Further, the results suggest that activation modulations in AC associated with attention-engaging listening tasks and those associated with auditory-motor performance are mediated by independent mechanisms.Peer reviewe

    Reward cues readily direct monkeys’ auditory performance resulting in broad auditory cortex modulation and interaction with sites along cholinergic and dopaminergic pathways

    Get PDF
    In natural settings, the prospect of reward often influences the focus of our attention, but how cognitive and motivational systems influence sensory cortex is not well understood. Also, challenges in training nonhuman animals on cognitive tasks complicate cross-species comparisons and interpreting results on the neurobiological bases of cognition. Incentivized attention tasks could expedite training and evaluate the impact of attention on sensory cortex. Here we develop an Incentivized Attention Paradigm (IAP) and use it to show that macaque monkeys readily learn to use auditory or visual reward cues, drastically influencing their performance within a simple auditory task. Next, this paradigm was used with functional neuroimaging to measure activation modulation in the monkey auditory cortex. The results show modulation of extensive auditory cortical regions throughout primary and non-primary regions, which although a hallmark of attentional modulation in human auditory cortex, has not been studied or observed as broadly in prior data from nonhuman animals. Psycho-physiological interactions were identified between the observed auditory cortex effects and regions including basal forebrain sites along acetylcholinergic and dopaminergic pathways. The findings reveal the impact and regional interactions in the primate brain during an incentivized attention engaging auditory task.Peer reviewe

    Interaction of the effects associated with auditory-motor integration and attention-engaging listening tasks

    Get PDF
    A number of previous studies have implicated regions in posterior auditory cortex (AC) in auditory-motor integration during speech production. Other studies, in turn, have shown that activation in AC and adjacent regions in the inferior parietal lobule (IPL) is strongly modulated during active listening and depends on task requirements. The present fMRI study investigated whether auditory-motor effects interact with those related to active listening tasks in AC and IPL. In separate task blocks, our subjects performed either auditory discrimination or 2-back memory tasks on phonemic or nonphonemic vowels. They responded to targets by either overtly repeating the last vowel of a target pair, overtly producing a given response vowel, or by pressing a response button. We hypothesized that the requirements for auditory-motor integration, and the associated activation, would be stronger during repetition than production responses and during repetition of nonphonemic than phonemic vowels. We also hypothesized that if auditory-motor effects are independent of task-dependent modulations, then the auditory-motor effects should not differ during discrimination and 2-back tasks. We found that activation in AC and IPL was significantly modulated by task (discrimination vs. 2-back), vocal-response type (repetition vs. production), and motor-response type (vocal vs. button). Motor-response and task effects interacted in IPL but not in AC. Overall, the results support the view that regions in posterior AC are important in auditory-motor integration. However, the present study shows that activation in wide AC and IPL regions is modulated by the motor requirements of active listening tasks in a more general manner. Further, the results suggest that activation modulations in AC associated with attention-engaging listening tasks and those associated with auditory-motor performance are mediated by independent mechanisms.</p

    Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks

    Get PDF
    "The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task.""The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task.""The functional organization of auditory cortex (AC) is still poorly understood. Previous studies suggest segregation of auditory processing streams for spatial and nonspatial information located in the posterior and anterior AC, respectively (Rauschecker and Tian, 2000; Arnott et al., 2004; Lomber and Malhotra, 2008). Furthermore, previous studies have shown that active listening tasks strongly modulate AC activations (Petkov et al., 2004; Fritz et al., 2005; Polley et al., 2006). However, the task dependence of AC activations has not been systematically investigated. In the present study, we applied high-resolution functional magnetic resonance imaging of the AC and adjacent areas to compare activations during pitch discrimination and n-back pitch memory tasks that were varied parametrically in difficulty. We found that anterior AC activations were increased during discrimination but not during memory tasks, while activations in the inferior parietal lobule posterior to the AC were enhanced during memory tasks but not during discrimination. We also found that wide areas of the anterior AC and anterior insula were strongly deactivated during the pitch memory tasks. While these results are consistent with the proposition that the anterior and posterior AC belong to functionally separate auditory processing streams, our results show that this division is present also between tasks using spatially invariant sounds. Together, our results indicate that activations of human AC are strongly dependent on the characteristics of the behavioral task."Peer reviewe

    Prevalence and correlates of dementia and mild cognitive impairment classified with different versions of the modified Telephone Interview for Cognitive Status (TICS-m)

    Get PDF
    Objectives The modified Telephone Interview for Cognitive Status (TICS-m) is an efficient and cost-effective screening instrument of dementia, but there is less support for its utility in the detection of mild cognitive impairment (MCI). We undertook a comprehensive evaluation of the utility of different TICS-m versions with or without an education-adjusted scoring method to classify dementia and MCI in a large population-based sample. Methods Cross-sectional assessment of cognition (TICS-m), depressive symptoms (CES-D), and apolipoprotein E (APOE) epsilon 4 status was performed on 1772 older adults (aged 71-78 y, education 5-16 y, 50% female) from the population-based older Finnish Twin Cohort. TICS-m classification methods with and without education adjustment were used to classify individuals with normal cognition, MCI, or dementia. Results The prevalence of dementia and MCI varied between education-adjusted (dementia = 3.7%, MCI = 9.3%) and unadjusted classifications (dementia = 8.5%-11%, MCI = 22.3%-41.3%). APOE epsilon 4 status was associated with dementia irrespective of education adjustment, but with MCI only when education adjustment was used. Regardless of the version, poorer continuous TICS-m scores were associated with higher age, lower education, more depressive symptoms, male sex, and being an APOE epsilon 4 carrier. Conclusions We showed that demographic factors, APOE epsilon 4 status, and depressive symptoms were similarly related to continuous TICS-m scores and dementia classifications with different versions. However, education-adjusted classification resulted in a lower prevalence of dementia and MCI and in a higher proportion of APOE epsilon 4 allele carriers among those identified as having MCI. Our results support the use of education-adjusted classification especially in the context of MCI.Peer reviewe

    Evidence for cue-independent spatial representation in the human auditory cortex during active listening

    Get PDF
    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multi-voxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.Peer reviewe

    Processing of pitch and location in human auditory cortex during visual and auditory tasks

    Get PDF
    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.Peer reviewe

    Accuracy of Imputation for Apolipoprotein E epsilon Alleles in Genome-Wide Genotyping Data

    Get PDF
    This diagnostic study evaluates the association of reference panels with imputation quality for 2 single-nucleotide polymorphisms located on the apolipoprotein E (APOE) gene.Non peer reviewe
    • …
    corecore