2,219 research outputs found

    Adsorption and desorption of hydrogen at nonpolar GaN(1-100) surfaces: Kinetics and impact on surface vibrational and electronic properties

    Get PDF
    The adsorption of hydrogen at nonpolar GaN(1-100) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab-initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN(1-100) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN(1-100) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion

    Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    No full text
    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies

    London Penetration Depth of Heavy-Fermion Superconductors

    Full text link

    Vortices on Hyperbolic Surfaces

    Full text link
    It is shown that abelian Higgs vortices on a hyperbolic surface MM can be constructed geometrically from holomorphic maps f:MNf:M \to N, where NN is also a hyperbolic surface. The fields depend on ff and on the metrics of MM and NN. The vortex centres are the ramification points, where the derivative of ff vanishes. The magnitude of the Higgs field measures the extent to which ff is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang--Mills fields on R4\R^4 is also given.Comment: Revised version: new section on four-dimensional interpretation of hyperbolic vortices added

    S-adenosyl-L-methionine: (S)-scoulerine 9-O-methyltransferase, a highly stereo- and regio-specific enzyme in tetrahydroprotoberberine biosynthesis

    Get PDF
    Suspension cultures of Berberis species are useful sources for the detection and isolation of a new enzyme which transfers the methyl group from S-adenosyl-L-methionine specifically to the 9-position of the (S)-enantiomer of scoulerine, producing (S)-tetrahydrocolumbamine. The enzyme was enriched 27-fold; it is not particle bound, has a pH optimum of 8.9, a molecular weight of 63 000 and shows a high degree of substrate specificity
    corecore