73 research outputs found

    Induced matter: Curved N-manifolds encapsulated in Riemann-flat N+1 dimensional space

    Get PDF
    Liko and Wesson have recently introduced a new 5-dimensional induced matter solution of the Einstein equations, a negative curvature Robertson-Walker space embedded in a Riemann flat 5-dimensional manifold. We show that this solution is a special case of a more general theorem prescribing the structure of certain N+1-dimensional Riemann flat spaces which are all solutions of the Einstein equations. These solutions encapsulate N-dimensional curved manifolds. Such spaces are said to "induce matter" in the sub-manifolds by virtue of their geometric structure alone. We prove that the N-manifold can be any maximally symmetric space.Comment: 3 page

    Model-Independent Plotting of the Cosmological Scale Factor As a Function of Lookback Time

    Get PDF
    In this work we describe a model-independent method of developing a plot of scale factor a(t) versus lookback time tL from the usual Hubble diagram of modulus data against redshift. This is the first plot of this type. We follow the model-independent methodology of Daly & Djorgovski used for their radio-galaxy data. Once the a(t)data plot is completed, any model can be applied and will display as described in the standard literature. We then compile an extensive data set to z = 1.8 by combining Type Ia supernovae (SNe Ia) data from SNLS3 of Conley et al., high-z SNe data of Riess et al., and radio-galaxy data of Daly & Djorgovski to validate the new plot. We first display these data on a standard Hubble diagram to confirm the best fit for ΛCDM cosmology, and thus validate the joined data set. The scale factor plot is then developed from the data and the ΛCDM model is again displayed from a least-squares fit. The fit parameters are in agreement with the Hubble diagram fit confirming the validity of the new plot. Of special interest is the transition time of the universe, which in the scale factor plot will appear as an inflection point in the data set. Noise is more visible in this presentation, which is particularly sensitive to inflection points of any model displayed in the plot, unlike on a modulus-z diagram, where there are no inflection points and the transition-z is not at all obvious by inspection. We obtain a lower limit of z â©Ÿ 0.6. It is evident from this presentation that there is a dearth of SNe data in the range z = 1–2, exactly the range necessary to confirm a ΛCDM transition-z around z = 0.76. We then compare a toy model wherein dark matter is represented as a perfect fluid with an equation of state p = −(1/3) ρ to demonstrate the plot sensitivity to model choice. Its density varies as 1/t2 and it enters the Friedmann equations as Ωdark/t2, replacing only the Ωdark/a3 term. The toy model is a close match to ΛCDM, but separates from it on the scale factor plot for similar ΛCDM density parameters. It is described in the Appendix. A more complete transition time analysis will be presented in a future paper

    Two transducer formula for more precise determination of ultrasonic phase velocity from standing wave measurements

    Get PDF
    A two transducer correction formula valid for both solid and liquid specimens is presented. Using computer simulations of velocity measurements, the accuracy and range of validity of the results are discussed and are compared with previous approximations

    Laser Thermomechanical Evaluation of Bonding Integrity

    Full text link
    Thermal imaging for the nondestructive evaluation (NDE) of materials appears to be of ever increasing importance for industrial applications. The development of new materials. both metallic and ceramic. as thermal and oxide barrier coatings present new challenges to inspection techniques. Thermal imaging methods seem ideally suited for such applications. being particularly sensitive to surface and near surface material thermal inhomogeneities that may be defect-related. However, these same sophisticated materials can pose rather sever requirements upon the efficacy of any particular type of thermal imaging. Typical problems encountered include rough. optically scattering surfaces. surfaces ranging from highly reflective to absorptive, complex surface geometry and microscopic to very macroscopic (practical components) imaging requirements.</p
    • 

    corecore