661 research outputs found

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Deformed Algebras from Inverse Schwinger Method

    Full text link
    We consider a problem which may be viewed as an inverse one to the Schwinger realization of Lie algebra, and suggest a procedure of deforming the so-obtained algebra. We illustrate the method through a few simple examples extending Schwinger's su(1,1)su(1,1) construction. As results, various q-deformed algebras are (re-)produced as well as their undeformed counterparts. Some extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late

    Representation theory of some infinite-dimensional algebras arising in continuously controlled algebra and topology

    Get PDF
    In this paper we determine the representation type of some algebras of infinite matrices continuously controlled at infinity by a compact metrizable space. We explicitly classify their finitely presented modules in the finite and tame cases. The algebra of row-column-finite (or locally finite) matrices over an arbitrary field is one of the algebras considered in this paper, its representation type is shown to be finite.Comment: 33 page

    Morse theory of the moment map for representations of quivers

    Get PDF
    The results of this paper concern the Morse theory of the norm-square of the moment map on the space of representations of a quiver. We show that the gradient flow of this function converges, and that the Morse stratification induced by the gradient flow co-incides with the Harder-Narasimhan stratification from algebraic geometry. Moreover, the limit of the gradient flow is isomorphic to the graded object of the Harder-Narasimhan-Jordan-H\"older filtration associated to the initial conditions for the flow. With a view towards applications to Nakajima quiver varieties we construct explicit local co-ordinates around the Morse strata and (under a technical hypothesis on the stability parameter) describe the negative normal space to the critical sets. Finally, we observe that the usual Kirwan surjectivity theorems in rational cohomology and integral K-theory carry over to this non-compact setting, and that these theorems generalize to certain equivariant contexts.Comment: 48 pages, small revisions from previous version based on referee's comments. To appear in Geometriae Dedicat

    Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade

    Full text link
    We study admittance and energy dissipation in an out-of-equlibrium single electron box. The system consists of a small metallic island coupled to a massive reservoir via single tunneling junction. The potential of electrons in the island is controlled by an additional gate electrode. The energy dissipation is caused by an AC gate voltage. The case of a strong Coulomb blockade is considered. We focus on the regime when electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. We obtain the admittance under the specified conditions. It turns out that the energy dissipation rate can be expressed via charge relaxation resistance and renormalized gate capacitance even out of equilibrium. We suggest the admittance as a tool for a measurement of the bosonic distribution corresponding collective excitations in the system

    Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure

    Full text link
    The spin-orbit interaction affects the electronic structure of solids in various ways. Topological insulators are one example where the spin-orbit interaction leads the bulk bands to have a non-trivial topology, observable as gapless surface or edge states. Another example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. It is of particular importance to know how these two effects, i.e. the non-trivial topology of electronic states and Rashba spin splitting, interplay with each other. Here we show, through sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba semiconductor, turns into a topological insulator under a reasonable pressure. This material is shown to exhibit several unique features such as, a highly pressure-tunable giant Rashba spin splitting, an unusual pressure-induced quantum phase transition, and more importantly the formation of strikingly different Dirac surface states at opposite sides of the material.Comment: 5 figures are include

    One-dimensional Topological Edge States of Bismuth Bilayers

    Get PDF
    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance as well as edge-dominated current flow. However, there have not been any spectroscopic measurements to demonstrate the one-dimensional (1D) nature of the edge modes. Among the first systems predicted to be a 2D topological insulator are bilayers of bismuth (Bi) and there have been recent experimental indications of possible topological boundary states at their edges. However, the experiments on such bilayers suffered from irregular structure of their edges or the coupling of the edge states to substrate's bulk states. Here we report scanning tunneling microscopy (STM) experiments which show that a subset of the predicted Bi-bilayers' edge states are decoupled from states of Bi substrate and provide direct spectroscopic evidence of their 1D nature. Moreover, by visualizing the quantum interference of edge mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties that are consistent with strong suppression of backscattering as predicted for the propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table

    Universal Resistances of the Quantum RC circuit

    Full text link
    We examine the concept of universal quantized resistance in the AC regime through the fully coherent quantum RC circuit comprising a cavity (dot) capacitively coupled to a gate and connected via a single spin-polarized channel to a reservoir lead. As a result of quantum effects such as the Coulomb interaction in the cavity and global phase coherence, we show that the charge relaxation resistance RqR_q is identical for weak and large transmissions and it changes from h/2e2h/2e^2 to h/e2h/e^2 when the frequency (times â„Ź\hbar) exceeds the level spacing of the cavity; hh is the Planck constant and ee the electron charge. For large cavities, we formulate a correspondence between the charge relaxation resistance h/e2h/e^2 and the Korringa-Shiba relation of the Kondo model. Furthermore, we introduce a general class of models, for which the charge relaxation resistance is universal. Our results emphasize that the charge relaxation resistance is a key observable to understand the dynamics of strongly correlated systems.Comment: 12 pages, 3 figure
    • …
    corecore