27 research outputs found

    Animal Migration: Seasonal Reversals of Migrant Moths

    Get PDF
    SummaryA recent study has found that, as migrating silver Y moths pass high overhead above central England in the spring, their headings were generally aimed towards north — a reversal of direction relative to that of autumn migrants. The silver Y must detect its direction of movement, likely by a magnetic sense which must reverse with the season

    Attractiveness of a Four-component Pheromone Blend to Male Navel Orangeworm Moths

    Get PDF
    The attractiveness to male navel orangeworm moth, Amyelois transitella, of various combinations of a four-component pheromone blend was measured in wind-tunnel bioassays. Upwind flight along the pheromone plume and landing on the odor source required the simultaneous presence of two components, (11Z,13Z)-hexadecadienal and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene, and the addition of either (11Z,13Z)-hexadecadien-1-ol or (11Z,13E)-hexadecadien-1-ol. A mixture of all four components produced the highest levels of rapid source location and source contact. In wind-tunnel assays, males did not seem to distinguish among a wide range of ratios of any of the three components added to (11Z,13Z)-hexadecadienal. Dosages of 10 and 100 ng of the 4-component blend produced higher levels of source location than dosages of 1 and 1,000 ng

    Biosynthesis of Unusual Moth Pheromone Components Involves Two Different Pathways in the Navel Orangeworm, Amyelois transitella

    Get PDF
    The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D3)-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D9]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C23 and C25 pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D5]-9,12,15-octadecatrienoic acid into 1–2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Δ11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation

    Modeling optimal strategies for finding a resource-linked, windborne odor plume: Theories, robotics, and biomimetic lessons from flying insects

    No full text
    Male moths locate females by navigating along her pheromone plume, often flying hundreds of meters en route. As the first male to find a calling female is most apt to be her mate, this can be termed ‘‘a race to find the female’’ and it is assumed to be under strong selective pressure for efficiency and rapidity. Locating a distant, odor-linked resource involves two strategies. The first is to contact the outer envelope of the odor plume. When wind direction is relatively invariant, the plume stretches and then crosswind flights may be favored, although when wind direction shifts over 608, upwind and downwind paths may be optimal. Alternatively, the path may be random with respect to the direction of wind flow, with periodic changes in direction, as in either Le´vy or Random Walks. After first detecting the pheromone, a second strategy follows: moths navigate along the plume by heading upwind when the pheromone is detected, with crosswind casting to re-establish contact if the plume is lost. This orientation path is not straightforward in nature, however, because atmospheric turbulence fragments the plume, thereby creating large odor gaps. Furthermore, a shifting wind direction can lead the responder out of the plume. One way to explore which strategies are optimal for enabling initial contact with the plume and subsequent navigation is through modeling of plumes’ dispersal and of insects’ flight strategies. Our simulations using the flight characteristics of the male gypsy moth (Lymantria dispar) suggest that search strategies similar to Le´vy Walks are most apt to result in a high probability of contact with plumes. Although a searching trajectory aimed predominately crosswind performed almost as well as those with a random orientation when wind direction was relatively stable, downwind biased trajectories were least successful. A random orientation with respect to immediate wind flow, as used in our simulations of Le´vy and Random Walks, seems optimal both for initial discovery of the plume and likelihood of locating an odor source. In the two available direct field observations, moths adopted a random orientation with respect to concurrent wind direction

    Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti

    No full text
    In a wind-tunnel study, the upwind flight and source location of female Aedes aegypti to plumes of carbon dioxide (CO2) gas and odour from human feet is tested. Both odour sources are presented singly and in combination. Flight upwind along the plumes is evident for both CO2 and odour from human feet when the odours are presented alone. Likewise, both odour sources are located by more than 70% of mosquitoes in less than 3 min. When both CO2 and odour from human feet are presented simultaneously in two different choice tests (with plumes superimposed or with plumes separated), there is no evidence that females orientate along the plume of CO2 and only a few mosquitoes locate its source. Rather, the foot odour plume is navigated and the source of foot odour is located by over 80% of female Ae. aegypti. When a female is presented a plume of CO2 within a broad plume of human foot odour of relatively low concentration, the source of CO2 is not located; instead, flight is upwind in the diffuse plume of foot odour. Although upwind flight by Ae. aegypti at long range is presumably induced by CO2 and the threshold of response to skin odours is lowered, our findings suggest that once females have arrived near a prospective human host, upwind orientation and landing are largely governed by the suite of odours from a human foot, while orientation is no longer influenced by CO2

    Attraction versus capture II: efficiency of the BG-sentinel trap under semifield conditions and characterizing response behaviors of male Aedes aegypti (Diptera: Culicidae)

    No full text
    Aedes aegypti (L.) is an important vector of viruses causing dengue, Zika, chikungunya, and yellow fever and as such presents a serious threat to public health in tropical regions. Control programs involving 'rear and release' of modified male Ae. aegypti are underway and require effective trapping methods for surveillance of both the released insects and the impacted wild mosquito population. The BG-Sentinel trap (BGS) is widely used in Ae. aegypti surveillance but its level of efficiency, that is, what proportion of the mosquitoes encountering the trap are captured, is unknown. This is especially true for male mosquitoes, the behavior of which is incompletely understood. We tested the efficiency of two versions of the BGS for capturing male Ae. aegypti under semifield conditions with and without CO2 and a human skin odor mimic lure and with these baits combined. A navyblue BGS trap emitting CO2 and a human skin odor mimic captured 18% of the released male Ae. aegypti, with a capture efficiency of 9 % (of the total encounters with the trap). Male Ae. aegypti had multiple encounters with the BGS that did not result in capture; they crossed over the trap entrance without being captured or landed on the sides of the trap. Swarming behavior around the BGS was also recorded, even when only a visual cue was present. Understanding male Ae. aegypti behaviors during an encounter with the BGS can inform improvement of trap design and therefore capture efficiency for surveillance in control programs
    corecore