95 research outputs found

    A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl 2

    Get PDF
    Magnesium chloride hydrates are characterized as promising energy storage materials in the builtenvironment. During the dehydration of these materials, there are chances for the release of harmful HCl gas, which can potentially damage the material as well as the equipment. Hydrolysis reactions in magnesium chloride hydrates are subject of study for industrial applications. However, the information about the possibility of hydrolysis reaction, and its preference over dehydration in energy storage systems is still ambiguous at the operating conditions in a seasonal heat storage system. A density functional theory level study is performed to determine molecular structures, charges, and harmonic frequencies in order to identify the formation of HCl at the operating temperatures in an energy storage system. The preference of hydrolysis over dehydration is quantified by applying thermodynamic equilibrium principles by calculating Gibbs free energies of the hydrated magnesium chloride molecules. The molecular structures of the hydrates (n = 0, 1, 2, 4, and 6) of MgCl2 are investigated to understand the stability and symmetry of these molecules. The structures are found to be noncomplex with almost no meta-stable isomers, which may be related to the faster kinetics observed in the hydration of chlorides compared to sulfates. Also, the frequency spectra of these molecules are calculated, which in turn are used to calculate the changes in Gibbs free energy of dehydration and hydrolysis reactions. From these calculations, it is found that the probability for hydrolysis to occur is larger for lower hydrates. Hydrolysis occurring from the hexa-, tetra-, and dihydrate is only possible when the temperature is increased too fast to a very high value. In the case of the mono-hydrate, hydrolysis may become favorable at high water vapor pressure and at low HCl pressure

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman

    Phosphatase and tensin homologue: a therapeutic target for SMA

    Get PDF
    Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA

    In-vivo X-ray Dark-Field Chest Radiography of a Pig

    Get PDF
    X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm²) of a living pig, acquired with clinically compatible parameters (40s scan time, approx. 80 μSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Klinische Wertigkeit perinatologischer �berwachungsmethoden

    No full text

    Deuterium retention and removal in liquid lithium determined by in situ NRA in Magnum-PSI

    No full text
    In this work, Li-filled 3D-printed porous tungsten samples were exposed to deuterium (D) plasma in Magnum-PSI with a wide ion flux from 4 × 1022 to 1.5 × 1024 m-2 s-1 and with a corresponding wide temperature range from below Li melting point (180.5 °C) to above Li deuteride (LiD) melting point (∼690 °C). The formation, decomposition and melting of LiD have been directly observed in the experiment via infra-red thermometry and visually post-mortem while still in vacuo, and correlated to the D retained content. The LiD formation was characterized by a solid precipitate layer formed on the surface with high emissivity (0.6-0.9) characterized by a blue or dark blue color after exposure. The melting of Li-LiD layer was found to occur close to the temperature predicted by Li-LiD phase diagram. In situ nuclear reaction analysis (NRA) was applied to perform the measurement of D retained in Li samples immediately after exposure without breaking the vacuum. D depth profiles were determined by NRA, in which the highest D concentration (15-45 at.%) was found in the top several micrometers and decreases with depth to low levels (<5%) within 5-30 μm. No pure LiD layer was found on the sample surfaces, however a D concentration close to 50 at.% was observed on a Li-D co-deposited layer on the clamping ring in some cases. The experiments also indicate that the D retained increases with increasing temperature until ∼500 °C. At temperatures beyond ∼500 °C the dissociation of LiD starts to dominate and the deuterium retention started to decrease. Overall, D retained fraction for all cases was found to be below ∼2%, which is significantly different from literatures where full uptake has been suggested. A 1D reaction-diffusion (RD) model based on D diffusion and chemical reactions with Li has been built. D depth profiles from the RD modelling can roughly match that from NRA measurement and a low D retained fraction below ∼2% was also indicated by the model. The model can also help explain the relationship between D retained and the surface temperature and fluence. After D plasma exposure, either helium or H plasma was utilized to remove the retained D in Li and both were proved to be effective and the removal efficiency can be as high as 96% above 420 °C
    • …
    corecore