15 research outputs found

    Pyrazinamide resistance-conferring mutations in pncA and the transmission of multidrug resistant TB in Georgia.

    Get PDF
    BACKGROUND: The ongoing epidemic of multidrug-resistant tuberculosis (MDR-TB) in Georgia highlights the need for more effective control strategies. A new regimen to treat MDR-TB that includes pyrazinamide (PZA) is currently being evaluated and PZA resistance status will largely influence the success of current and future treatment strategies. PZA susceptibility testing was not routinely performed at the National Reference Laboratory (NRL) in Tbilisi between 2010 and September 2015. We here provide a first insight into the prevalence of PZA resistant TB in this region. METHODS: Phenotypic susceptibility to PZA was determined in a convenience collection of well-characterised TB patient isolates collected at the NRL in Tbilisi between 2012 and 2013. In addition, the pncA gene was sequenced and whole genome sequencing was performed on two isolates. RESULTS: Out of 57 isolates tested 33 (57.9%) showed phenotypic drug resistance to PZA and had a single pncA mutation. All of these 33 isolates were MDR-TB strains. pncA mutations were absent in all but one of the 24 PZA susceptible isolate. In total we found 18 polymorphisms in the pncA gene. From the two major MDR-TB clusters represented (94-32 and 100-32), 10 of 15, 67.0% and 13 of 14, 93.0% strains, respectively were PZA resistant. We also identified a member of the potentially highly transmissive clade A strain carrying the characteristic I6L substitution in PncA. Another strain with the same MLVA type as the clade A strain acquired a different mutation in pncA and was genetically more distantly related suggesting that different branches of this particular lineage have been introduced into this region. CONCLUSION: In this high MDR-TB setting more than half of the tested MDR-TB isolates were resistant to PZA. As PZA is part of current and planned MDR-TB treatment regimens this is alarming and deserves the attention of health authorities. Based on our typing and sequence analysis results we conclude that PZA resistance is the result of primary transmission as well as acquisition within the patient and recommend prospective genotyping and PZA resistance testing in high MDR-TB settings. This is of utmost importance in order to preserve bacterial susceptibility to PZA to help protect (new) second line drugs in PZA containing regimens

    Combined species identification, genotyping, and drug resistance detection of mycobacterium tuberculosis cultures by mlpa on a bead-based array

    Get PDF
    The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool to characterise Mycobacterium tuberculosis. We used Multiplex Ligation-dependent Probe Amplification (MLPA) to screen for dispersed mutations, which can be successfully applied to Mycobacterium tuberculosis as was previously shown. Here we selected 47 discriminative and informative markers and designed MLPA probes accordingly to allow analysis with a liquid bead array and robust reader (Luminex MAGPIX technology). To validate the bead-based MLPA, we screened a panel of 88 selected strains, previously characterised by other methods with the developed multiplex assay using automated positive and negative calling. In total 3059 characteristics were screened and 3034 (99.2%) were consistent with previous molecular characterizations, of which 2056 (67.2%) were directly supported by other molecular methods, and 978 (32.0%) were consistent with but not directly supported by previous molecular characterizations. Results directly conflicting or inconsistent with previous methods, were obtained for 25 (0.8%) of the characteristics tested. Here we report the validation of the bead-based MLPA and demonstrate its potential to simultaneously identify a range of drug resistance markers, discriminate the species within the Mycobacterium tuberculosis complex, determine the genetic lineage and detect and identify the clinically most relevant non-tuberculous mycobacterial species. The detection of multiple genetic markers in clinically derived Mycobacterium tuberculosis strains with a multiplex assay could reduce the number of TB-dedicated screening methods needed for full characterization. Additionally, as a proportion of the markers screened are specific to certain Mycobacterium tuberculosis lineages each profile can be checked for internal consistency. Strain characterization can allow selection of appropriate treatment and thereby improve treatment outcome and patient management

    The Relative Positioning of Genotyping and Phenotyping for Tuberculosis Resistance Screening in Two EU National Reference Laboratories in 2023.

    No full text
    The routine use of whole genome sequencing (WGS) as a reference typing technique for Mycobacterium tuberculosis epidemiology combined with the catalogued and extensive knowledge base of resistance-associated mutations means an initial susceptibility prediction can be derived from all cultured isolates in our laboratories based on WGS data alone. Preliminary work has confirmed, in our low-burden settings, these predictions are for first-line drugs, reproducible, robust with an accuracy similar to phenotypic drug susceptibility testing (pDST) and in many cases able to also predict the level of resistance (MIC). Routine screening for drug resistance by WGS results in approximately 80% of the isolates received being predicted as fully susceptible to the first-line drugs. Parallel testing with both WGS and pDST has demonstrated that routine pDST of genotypically fully susceptible isolates yields minimal additional information. Thus, rather than re-confirming all fully sensitive WGS-based predictions, we suggest that a more efficient use of available mycobacterial culture capacity in our setting is the development of a more extensive and detailed pDST targeted at any mono or multi-drug-resistant isolates identified by WGS screening. Phenotypic susceptibility retains a key role in the determination of an extended susceptibility profile for mono/multi-drugresistant isolates identified by WGS screening. The pDST information collected is also needed to support the development of future catalogues of resistance-associated mutations

    Region of Difference 1 in Nontuberculous Mycobacterium Species Adds a Phylogenetic and Taxonomical Characterâ–¿

    Get PDF
    The esat-6 and cfp-10 genes are essential for virulence in Mycobacterium tuberculosis. Among nontuberculous mycobacteria, we found these genes only in M. kansasii, M. szulgai, M. marinum, and M. riyadhense, with unique sequences. This adds a phylogenetic and taxonomical characteristic and may represent a virulence factor for nontuberculous mycobacteria

    Comparative Study on Genotypic and Phenotypic Second-Line Drug Resistance Testing of Mycobacterium tuberculosis Complex Isolatesâ–¿

    No full text
    The mycobacterium growth indicator tube (MGIT960) automated liquid medium testing method is becoming the international gold standard for second-line drug susceptibility testing of multidrug- and extensively drug-resistant Mycobacterium tuberculosis complex isolates. We performed a comparative study of the current gold standard in the Netherlands, the Middlebrook 7H10 agar dilution method, the MGIT960 system, and the GenoType MTBDRsl genotypic method for rapid screening of aminoglycoside and fluoroquinolone resistance. We selected 28 clinical multidrug- and extensively drug-resistant M. tuberculosis complex strains and M. tuberculosis H37Rv. We included amikacin, capreomycin, moxifloxacin, prothionamide, clofazimine, linezolid, and rifabutin in the phenotypic test panels. For prothionamide and moxifloxacin, the various proposed breakpoint concentrations were tested by using the MGIT960 method. The MGIT960 method yielded results 10 days faster than the agar dilution method. For amikacin, capreomycin, linezolid, and rifabutin, results obtained by all methods were fully concordant. Applying a breakpoint of 0.5 μg/ml for moxifloxacin led to results concordant with those of both the agar dilution method and the genotypic method. For prothionamide, concordance was noted only at the lowest and highest MICs. The phenotypic methods yielded largely identical results, except for those for prothionamide. Our study supports the following breakpoints for the MGIT960 method: 1 μg/ml for amikacin, linezolid, and clofazimine, 0.5 μg/ml for moxifloxacin and rifabutin, and 2.5 μg/ml for capreomycin. No breakpoint was previously proposed for clofazimine. For prothionamide, a division into susceptible, intermediate, and resistant seems warranted, although the boundaries require additional study. The genotypic assay proved a reliable and rapid method for predicting aminoglycoside and fluoroquinolone resistance

    Cross border, highly individualised treatment of a patient with challenging extensively drug-resistant tuberculosis.

    Get PDF
    Extensively drug-resistant tuberculosis (XDR-TB) is defined by resistance to isoniazid, rifampicin, any fluoroquinolone and at least one of the three second line injectable drugs, such as amikacin. Drugs toxicity and duration impair adherence to treatment and outcome is rather poor [1]. We report on a particularly challenging XDR-TB patient with persistent non-adherence to treatment and an exceptionally complex drug susceptibility pattern

    Summary of the MLPA probes designed and used in this study<sup>a</sup>.

    No full text
    a<p>only probes that were functional in this study are shown. Probes are named after the gene and specific codon, nucleotide position (bold), or region they target. Probes are either targeting the mutation (mut) or the wild type (wt) sequence or the presence or absence of an RD. Bacterial DNA sequences are targeted with the left oligo (capital letters), spanning oligo (bold), right oligo (italics), iii =  inosine. xTAG sequences are not shown. RD  =  region of difference.</p
    corecore