130 research outputs found

    Expression of N-terminally truncated cyclin B in the Drosophila larval brain leads to mitotic delay at late anaphase

    Get PDF
    We have introduced an N-terminally truncated form of cyclin B into the Drosophila germ-line downstream of the yeast upstream activator that responds to GAL4. When such lines of flies are crossed to lines in which GAL4 is expressed in imaginal discs and larval brain, the majority of the resulting progeny die at the late pupal stage of development. Very rarely (< 0.1% of progeny) adults emerge that have a mutant phenotype typical of flies with mutations in genes required for the cell cycle; they have rough eyes, deformed wings, abnormal bristles, and die within hours of emergence. The brains of third instar larval progeny show an abnormally high proportion of mitotic cells containing overcondensed chromatids that have undergone anaphase separation, together with cells that cannot be assigned to a particular mitotic stage. Immunostaining indicates that these anaphase cells contain moderate levels of cyclin B, suggesting that persistent p34^(cdc2) kinase activity can prevent progression from anaphase into telophase

    Expression of N-terminally truncated cyclin B in the Drosophila larval brain leads to mitotic delay at late anaphase

    Get PDF
    We have introduced an N-terminally truncated form of cyclin B into the Drosophila germ-line downstream of the yeast upstream activator that responds to GAL4. When such lines of flies are crossed to lines in which GAL4 is expressed in imaginal discs and larval brain, the majority of the resulting progeny die at the late pupal stage of development. Very rarely (< 0.1% of progeny) adults emerge that have a mutant phenotype typical of flies with mutations in genes required for the cell cycle; they have rough eyes, deformed wings, abnormal bristles, and die within hours of emergence. The brains of third instar larval progeny show an abnormally high proportion of mitotic cells containing overcondensed chromatids that have undergone anaphase separation, together with cells that cannot be assigned to a particular mitotic stage. Immunostaining indicates that these anaphase cells contain moderate levels of cyclin B, suggesting that persistent p34^(cdc2) kinase activity can prevent progression from anaphase into telophase

    Adult onset global loss of the fto gene alters body composition and metabolism in the mouse.

    Get PDF
    The strongest BMI-associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake

    Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity.

    Get PDF
    This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2015.12.025More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.This work was supported by funding from the Max-Planck Society, ERC (ERC-StG-281641), DFG (SFB992 “MedEp”; SFB 1052 “ObesityMechanisms”), EU_FP7 (NoE ”Epigenesys”; “Beta-JUDO” n° 279153), BMBF (DEEP), MRC (Metabolic Disease Unit - APC, SOR, GSHY, MRC_MC_UU_12012/1), Wellcome Trust (SOR, 095515/Z/11/Z) and the German Research Council (DFG) for the Clinical Research Center "Obesity Mechanisms" CRC1052/1 C05 and the Federal Ministry of Education and Research, Germany, FKZ, 01EO1001 (Integrated Research and Treatment Center (IFB) Adiposity Diseases

    GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans.

    Get PDF
    GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.This work and authors were funded by the NIHR Cambridge Biomedical Research Centre; NIHR Rare Disease Translational Research Collaboration; Medical Research Council [MC_UU_12012/2 and MRC_MC_UU_12012/3]; MRC Metabolic Diseases Unit [MRC_MC_UU_12012/5 and MRC_MC_UU_12012.1]; Wellcome Trust Strategic Award [100574/Z/12/Z and 100140]; Wellcome Trust [107064 , 095515/Z/11/Z , 098497/Z/12/Z, 106262/Z/14/Z and 106263/Z/14/Z]; British Heart Foundation [RG/12/13/29853]; Addenbrooke’s Charitable Trust / Evelyn Trust Cambridge Clinical Research Fellowship [16-69] US Department of Agriculture: 2010-34323-21052; EFSD project grant and a Royal College of Surgeons Research Fellowship, Diabetes UK Harry Keen intermediate clinical fellowship (17/0005712). European Research Council, Bernard Wolfe Health Neuroscience Endowment, Experimental Medicine Training Initiative/AstraZeneca and Medimmune

    GDF15 linked to maternal risk of nausea and vomiting during pregnancy

    Get PDF
    GDF15, a hormone acting on the brainstem, has been implicated in the nausea and vomiting of pregnancy (NVP) including its most severe form, Hyperemesis Gravidarum (HG), but a full mechanistic understanding is lacking [1-4]. Here we report that fetal production of GDF15, and maternal sensitivity to it, both contribute substantially to the risk of HG. We confirmed that higher GDF15 levels in maternal blood are associated with vomiting in pregnancy and HG. Using mass spectrometry to detect a naturally-labelled GDF15 variant we demonstrate that the vast majority of GDF15 in the maternal plasma is derived from the feto-placental unit. By studying carriers of rare and common genetic variants we found that low levels of GDF15 in the non-pregnant state increase the risk of developing HG. Conversely, women with beta-thalassemia, a condition where GDF15 levels are chronically high [5], report very low levels of NVP. In mice, the acute food intake response to a bolus of GDF15 is influenced bi-directionally by prior levels of circulating GDF15 in a manner suggesting that this system is susceptible to desensitization. Our findings support a putative causal role for fetally-derived GDF15 in the nausea and vomiting of human pregnancy, with maternal sensitivity, at least partly determined by pre-pregnancy exposure to the hormone, being a major influence on its severity. They also suggest mechanism-based approaches to the treatment and prevention of HG.</p
    corecore