177 research outputs found

    Historical Reflection of Food Processing and the Role of Legumes as Part of a Healthy Balanced Diet

    Get PDF
    The purpose of food processing has changed over time. High-intensity industrially processed food often exhibits higher concentrations of added sugar, salt, higher energy, and lower micronutrient density than does similar food or meals prepared at home from raw or minimally processed food. Viewing the evolution of food processing from history, one could make out three major transitions related to human socioeconomic changes. The first transition was marked by the change from hunting and gathering to settled societies with agriculture and livestock farming. The second and third transitions were associated with the Industrial Revolution and with market liberalization, global trade and automation, respectively. The next major transition that will influence food processing and shape human nutrition may include the exploitation of sustainable and efficient protein and food sources that will ensure high-quality food production for the growing world population. Apart from novel food sources, traditional food such as legumes and pulses likewise exhibit great potential to contribute to a healthy balanced diet. The promotion of legumes should be intensified in public dietary guidelines because their consumption is rather low in high-income countries and increasingly displaced as a traditional staple by industrially processed food in low- to middle-income countries

    Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective

    Get PDF
    Cyclodextrins (CDs) are a group of cyclic oligosaccharides produced from starch or starch derivatives. They contain six (αCD), seven (βCD), eight (γCD), or more glucopyranose monomers linked via α-1,4-glycosidic bonds. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall, the latter forming a more apolar internal cavity. Because of this special architecture, CDs are soluble in water and can simultaneously host lipophilic guest molecules. The major advantage of inclusion into CDs is increased aqueous solubility of such lipophilic substances. Accordingly, we present studies where the complexation of natural compounds such as propolis and dietary plant bioactives (e.g., tocotrienol, pentacyclic triterpenoids, curcumin) with γCD resulted in improved stability, bioavailability, and bioactivity in various laboratory model organisms and in humans. We also address safety aspects that may arise from increased bioavailability of plant extracts or natural compounds owing to CD complexation. When orally administered, α- and βCD-which are inert to intestinal digestion-are fermented by the human intestinal flora, while γCD is almost completely degraded to glucose units by α-amylase. Hence, recent reports indicate that empty γCD supplementation exhibits metabolic activity on its own, which may provide opportunities for new applications

    Taurine Enhances Iron-Related Proteins and Reduces Lipid Peroxidation in Differentiated C2C12 Myotubes

    Get PDF
    Taurine is a nonproteinogenic amino sulfonic acid in mammals. Interestingly, skeletal muscle is unable to synthesize taurine endogenously, and the processing of muscular taurine changes throughout ageing and under specific pathophysiological conditions, such as muscular dystrophy. Ageing and disease are also associated with altered iron metabolism, especially when there is an excess of labile iron. The present study addresses the question of whether taurine connects cytoprotective effects and redox homeostasis in a previously unknown iron-dependent manner. Using cultured differentiated C2C12 myotubes, the impact of taurine on markers of lipid peroxidation, redox-sensitive enzymes and iron-related proteins was studied. Significant increases in the heme protein myoglobin and the iron storage protein ferritin were observed in response to taurine treatment. Taurine supplementation reduced lipid peroxidation and BODIPY oxidation by ~60 and 25%, respectively. Furthermore, the mRNA levels of redox-sensitive heme oxygenase (Hmox1), catalase (Cat) and glutamate-cysteine ligase (Gclc) and the total cellular glutathione content were lower in taurine-supplemented cells than they were in the control cells. We suggest that taurine may inhibit the initiation and propagation of lipid peroxidation by lowering basal levels of cellular stress, perhaps through reduction of the cellular labile iron pool

    Phenotyping of Drosophila Melanogaster-A Nutritional Perspective

    Get PDF
    The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context

    In Contrast to Dietary Restriction, Application of Resveratrol in Mice Does not Alter Mouse Major Urinary Protein Expression

    Get PDF
    Resveratrol (RSV) supplementation in mice has been discussed as partly mimicking the beneficial effects of dietary restriction (DR). However, data on putative benefits from resveratrol application in mice and other model organisms including humans is contradictory. Mouse major urinary proteins (MUPs) are a family of proteins that are expressed in rodent liver and secreted via urine. Impacting (mating) behavior and pheromone communication, they are severely down-regulated upon DR. We carried out two studies in C57BL/6Rj mice where RSV was either supplemented via diet or injected intraperitoneally for 8 weeks. Contrary to -40% DR, RSV did not decrease total MUP protein expression or Mup (amongst others Mup3, Mup5, Mup6, Mup15, and Mup20) mRNA levels in mouse liver when compared to ad-libitum (AL)-fed controls. Since inhibitory glucocorticoid response elements can be found in Mup promoters, we also measured glucocorticoid receptor (GR) levels in nuclear hepatic extracts. Consistent with differential MUP expression, we observed more nuclear GR in DR mice than in RSV-supplemented and AL control mice with no difference between RSV and AL. These findings point to the notion that, in mice, RSV does not mimic DR in terms of differential MUP expression

    Polyphenols from Cocoa and Vascular Health—A Critical Review

    Get PDF
    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted

    Curcumin may impair iron status when fed to mice for six months

    Get PDF
    AbstractCurcumin has been shown to have many potentially health beneficial properties in vitro and in animal models with clinical studies on the toxicity of curcumin reporting no major side effects. However, curcumin may chelate dietary trace elements and could thus potentially exert adverse effects. Here, we investigated the effects of a 6 month dietary supplementation with 0.2% curcumin on iron, zinc, and copper status in C57BL/6J mice. Compared to non-supplemented control mice, we observed a significant reduction in iron, but not zinc and copper stores, in the liver and the spleen, as well as strongly suppressed liver hepcidin and ferritin expression in the curcumin-supplemented mice. The expression of the iron-importing transport proteins divalent metal transporter 1 and transferrin receptor 1 was induced, while hepatic and splenic inflammatory markers were not affected in the curcumin-fed mice. The mRNA expression of other putative target genes of curcumin, including the nuclear factor (erythroid-derived 2)-like 2 and haem oxygenase 1 did not differ between the groups. Most of the published animal trials with curcumin-feeding have not reported adverse effects on iron status or the spleen. However, it is possible that long-term curcumin supplementation and a Western-type diet may aggravate iron deficiency. Therefore, our findings show that further studies are needed to evaluate the effect of curcumin supplementation on iron status

    Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review

    Get PDF
    Apolipoprotein E is a polymorphic and multifunctional protein with numerous roles in lipoprotein metabolism. The three common isoforms apoE2, apoE3 and apoE4 show isoform-specific functional properties including different susceptibilities to diseases. ApoE4 is an accepted risk factor for Alzheimer's disease and cardiovascular disorders. Recently, associations between apoE4 and infectious diseases have been demonstrated. This review summarises how apoE4 may be involved in the infection incidence and associated pathologies of specific infectious diseases, namely hepatitis C, human immunodeficiency virus disease and herpes simplex
    • …
    corecore