15 research outputs found

    Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation

    Get PDF
    A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40◦C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90◦C), pH (6–10), and salt concentration (up to 300mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils

    High-Precision On-line Total Phenolic Compounds Analysis Oxidized by Folin Ciocalteu: Application to Ziziphus Jujuba Extract

    No full text
    This study deals with a new methodology for total phenolic compounds on-line oxidation utilizing continuous flowing carrier stream technique provided by a system including a micropump, an auto-sampling and a reacting coil. Visible spectrophotometric measurement at 765 nm wavelength was based on fast oxidised phenols by Folin ciocalteu resulting in spectrophotometrically detectable blue chromophores. The reaction was automated to perform rapidity (sampling frequency 11 samples h-1), simplicity, reagents consuming and specificity. It offered a good linearity in a range of 10 - 50 mg mL-1 with no memory effect. It showed excellent precision (RSD lower than 0,4 %) with detection going less than 0,03 ηg.mL-1. The effectiveness of the developed method was verified by its application for the assay of total phenolic compounds in Ziziphus Jujuba fruit extract. This new method can be used as a quality-control tool for routine quantitative analysis of phenolic compounds in the different matrix. It opens up a number of application areas in health and environmental sciences, as well as measurements of body fluids in physiological and metabolic research

    Martensitic Transformation and Crystalline Structure of Ni50Mn50−xSnx Melt-Spun Heusler Alloys

    No full text
    The structure and thermal behavior are key factors that influence the functional response of Ni–Mn–Sn alloys. The present study reports the production as well as the structure and thermal analysis of melt-spun (solidification rate: 40 ms−1) Ni50 Mn50−xSnx (x = 10, 11, 12 and 13 at.%) alloys. X-ray diffraction measurements were performed at room temperature. The austenite state has an L21 structure, whereas the structure of the martensite is 7M or 10M (depending on the Sn/Mn percentage). Furthermore, the structural martensitic transformation was detected by differential scanning calorimetry (DSC). As expected, upon increasing the Sn content, the characteristic temperatures also increase. The same tendency is detected in the thermodynamic parameters (entropy and enthalpy). The e/a control allows the development production of alloys with a transformation close to room temperature

    Optimization of enzymatic saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third generation bioethanol

    No full text
    To evaluate the efficacy of marine macro-algae Chaetomorpha linum as a potential biofuel resource, the effects of the enzymatic treatment conditions on sugar yield were evaluated using a three factor three level Box-Behnken design. The hydrothermally pretreated C. linum biomass was treated with Aspergillus niger cellulase at various liquid to solid ratios (50–100 mL/g), enzyme concentrations (10–60 U/g) and incubations times (4–44 h). Data obtained from the response surface methodology were subjected to the analysis of variance and analyzed using a second order polynomial equation. The fitted model was found to be robust and was used to optimize the sugar yield (%) during enzymatic hydrolysis. The optimum saccharification conditions were: L/S ratio 100 mL/g; enzyme concentration 52 U/g; and time 44 h. Their application led to a maximum sugar yield of 30.2 g/100g dry matter. Saccharomyces cerevisiae fermentation of the algal hydrolysate provided 8.6 g ethanol/100g dry matter. These results showed a promising future of applying C. linum biomass as potential feedstock for third generation bioethanol production

    Saline Sediments as a Suitable Source for Halophilic Inoculums to Degrade Azo Dyes in Synthetic and Real Textile Wastewaters by Microbial Electrochemical Systems

    No full text
    The treatment of textile wastewater (TWW) loaded with recalcitrant azo dyes in bioelectrochemical systems (BES) rather than in physicochemical processes is a low-cost and environmentally friendly process. The main objective of this study is to investigate the potential of different saline sediments collected from extreme Tunisian environments for the formation of bioanodes capable ofsimultaneous azo dyes degradation and electric current generation in synthetic (STWW) and real textile wastewaters (RTWW) characterized by a varied composition of azo dyes and a high salinity. The obtained bioanodes and anolytes were studied comparatively by electrochemical, microscopic, analytical, and molecular tools.Based on the UV–visible spectra analysis, the breakdown of the azo bond was confirmed. With RTWW, the BES achieved a chemical oxygen demand (COD) abatement rate of 85%with a current density of 2.5 A/m2. Microbial community analysis indicated that a diverse community of bacteria was active for effluent treatment coupled with energy production. At the phylum level, the electrodes were primarily colonized by proteobacteria and firmicutes, which are the two phyla most involved in bioremediation. The analysis of the microbial community also showed the abundance of Marinobacter hydrocarbonoclasticus and Marinobacter sp. species characterized by their high metabolic capacity, tolerance to extremophilic conditions, and role in hydrocarbon degradation

    A lower energetic, protein and uncooked cornstarch intake is associated with a more severe outcome in glycogen storage disease type III: an observational study of 50 patients.

    No full text
    International audienceBackground:Glycogen storage disease type III (GSDIII), due to a deficiency of glycogen debrancher enzyme (GDE), is particularly frequent in Tunisia. Phenotypic particularities of Tunisian patients remain unknown. Our aim was to study complications of GSDIII in a Tunisian population and to explore factors interfering with its course.Methods:A retrospective longitudinal study was conducted over 30 years (1986–2016) in the referral metabolic center in Tunisia.Results:Fifty GSDIII patients (26 boys), followed for an average 6.75 years, were enrolled. At the last evaluation, the median age was 9.87 years and 24% of patients reached adulthood. Short stature persisted in eight patients and obesity in 19 patients. Lower frequency of hypertriglyceridemia (HTG) was associated with older patients (p<0.0001), higher protein diet (p=0.068) and lower caloric intake (p=0.025). Hepatic complications were rare. Cardiac involvement (CI) was frequent (91%) and occurred early at a median age of 2.6 years. Severe cardiomyopathy (50%) was related to lower doses of uncooked cornstarch (p=0.02). Neuromuscular involvement (NMI) was constant, leading to a functional discomfort in 64% of cases and was disabling in 34% of cases. Severe forms were related to lower caloric (p=0.005) and protein intake (p<0.015).Conclusions:A low caloric, protein and uncooked cornstarch intake is associated with a more severe outcome in GSDIII Tunisian patients. Neuromuscular and CIs were particularly precocious and severe, even in childhood. Genetic and epigenetic factors deserve to be explored

    Table2.DOC

    No full text
    <p>A number of Pseudomonas strains function as inoculants for biocontrol, biofertilization, and phytostimulation, avoiding the use of pesticides and chemical fertilizers. Here, we present a new metabolically versatile plant growth-promoting rhizobacterium, Pseudomonas rhizophila S211, isolated from a pesticide contaminated artichoke field that shows biofertilization, biocontrol and bioremediation potentialities. The S211 genome was sequenced, annotated and key genomic elements related to plant growth promotion and biosurfactant (BS) synthesis were elucidated. S211 genome comprises 5,948,515 bp with 60.4% G+C content, 5306 coding genes and 215 RNA genes. The genome sequence analysis confirmed the presence of genes involved in plant-growth promoting and remediation activities such as the synthesis of ACC deaminase, putative dioxygenases, auxin, pyroverdin, exopolysaccharide levan and rhamnolipid BS. BS production by P. rhizophila S211 grown on olive mill wastewater based media was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum BS production yield (720.80 ± 55.90 mg/L) were: 0.5% (v/v) inoculum size, 15% (v/v) olive oil mill wastewater (OMWW) and 40°C incubation temperature at pH 6.0 for 8 days incubation period. Biochemical and structural characterization of S211 BS by chromatography and spectroscopy studies suggested the glycolipid nature of the BS. P. rhizophila rhamnolipid was stable over a wide range of temperature (40–90°C), pH (6–10), and salt concentration (up to 300 mM NaCl). Due to its low-cost production, emulsification activities and high performance in solubilization enhancement of chemical pesticides, the indigenous BS-producing PGPR S211 could be used as a promising agent for environmental bioremediation of pesticide-contaminated agricultural soils.</p
    corecore